Leystu fyrir a
\left\{\begin{matrix}a=-\frac{ye^{\frac{x}{h}}}{1-e^{\frac{x}{h}}}\text{, }&x\neq 0\text{ and }h\neq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }h\neq 0\text{ and }x=0\end{matrix}\right.
Leystu fyrir h
\left\{\begin{matrix}h=-\frac{x}{\ln(\frac{a-y}{a})}\text{, }&\left(x\neq 0\text{ and }y\neq 0\text{ and }y>a\text{ and }a<0\right)\text{ or }\left(x\neq 0\text{ and }y\neq 0\text{ and }y<a\text{ and }a>0\right)\\h\neq 0\text{, }&\left(a=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Graf
Deila
Afritað á klemmuspjald
a\left(1-e^{-\frac{x}{h}}\right)=y
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
a-ae^{-\frac{x}{h}}=y
Notaðu dreifieiginleika til að margfalda a með 1-e^{-\frac{x}{h}}.
\left(1-e^{-\frac{x}{h}}\right)a=y
Sameinaðu alla liði sem innihalda a.
\frac{\left(1-e^{-\frac{x}{h}}\right)a}{1-e^{-\frac{x}{h}}}=\frac{y}{1-e^{-\frac{x}{h}}}
Deildu báðum hliðum með 1-e^{-xh^{-1}}.
a=\frac{y}{1-e^{-\frac{x}{h}}}
Að deila með 1-e^{-xh^{-1}} afturkallar margföldun með 1-e^{-xh^{-1}}.
a=\frac{ye^{\frac{x}{h}}}{e^{\frac{x}{h}}-1}
Deildu y með 1-e^{-xh^{-1}}.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}