Leystu fyrir x (complex solution)
x=\left(-i\right)\ln(\left(\left(-1\right)y+1\right)^{\frac{1}{2}}+\left(\left(-1\right)y\right)^{\frac{1}{2}})+2\pi n_{5}\text{, }n_{5}\in \mathrm{Z}
x=\left(-i\right)\ln(\left(\left(-1\right)y+1\right)^{\frac{1}{2}}+\left(-1\right)\left(\left(-1\right)y\right)^{\frac{1}{2}})+2\pi n_{4}\text{, }n_{4}\in \mathrm{Z}
x=\left(-i\right)\ln(\left(-1\right)\left(\left(-1\right)y+1\right)^{\frac{1}{2}}+\left(\left(-1\right)y\right)^{\frac{1}{2}})+2\pi n_{17}\text{, }n_{17}\in \mathrm{Z}
x=\left(-i\right)\ln(\left(-1\right)\left(\left(-1\right)y+1\right)^{\frac{1}{2}}+\left(-1\right)\left(\left(-1\right)y\right)^{\frac{1}{2}})+2\pi n_{16}\text{, }n_{16}\in \mathrm{Z}
Leystu fyrir y (complex solution)
y=\frac{-\cos(2x)+1}{2}
Leystu fyrir x
\left\{\begin{matrix}x=\arccos(\sqrt{1-y})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{; }x=-\arccos(\sqrt{1-y})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&y\geq 0\text{ and }y\leq 1\text{ and }\sqrt{1-y}\leq 1\\x=-\arccos(\sqrt{1-y})+2\pi n_{3}+\pi \text{, }n_{3}\in \mathrm{Z}\text{; }x=\arccos(\sqrt{1-y})+2\pi n_{4}-\pi \text{, }n_{4}\in \mathrm{Z}\text{, }&y\geq 0\text{ and }y\leq 1\text{ and }-\sqrt{1-y}\geq -1\end{matrix}\right.
Leystu fyrir y
y=-\left(\cos(x)\right)^{2}+1
Graf
Spurningakeppni
Trigonometry
5 vandamál svipuð og:
y = 1 - \cos ^ { 2 } x
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}