Leystu fyrir x
x=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{10}\left(-1-i\right)-2\right)}{8y}
y\neq 0
Leystu fyrir y
y=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{10}\left(-1-i\right)-2\right)}{8x}
x\neq 0
Spurningakeppni
Complex Number
5 vandamál svipuð og:
x y = \frac { - 1 + \sqrt { 3 } } { 2 } \times \frac { - 1 - \sqrt { 5 i } } { 2 }
Deila
Afritað á klemmuspjald
2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
Margfaldaðu báðar hliðar jöfnunnar með 2.
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Notaðu dreifieiginleika til að margfalda -1+\sqrt{3} með \frac{-1-\sqrt{5i}}{2}.
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Deildu í hvern lið í -1-\sqrt{5i} með 2 til að fá -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Til að finna andstæðu -\frac{1}{2}-\frac{1}{2}\sqrt{5i} skaltu finna andstæðu hvers liðs.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
Deildu í hvern lið í -1-\sqrt{5i} með 2 til að fá -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
Notaðu dreifieiginleika til að margfalda \sqrt{3} með -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2yx=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
Jafnan er í staðalformi.
\frac{2yx}{2y}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
Deildu báðum hliðum með 2y.
x=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
Að deila með 2y afturkallar margföldun með 2y.
x=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8y}
Deildu \frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} með 2y.
2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
Margfaldaðu báðar hliðar jöfnunnar með 2.
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Notaðu dreifieiginleika til að margfalda -1+\sqrt{3} með \frac{-1-\sqrt{5i}}{2}.
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Deildu í hvern lið í -1-\sqrt{5i} með 2 til að fá -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Til að finna andstæðu -\frac{1}{2}-\frac{1}{2}\sqrt{5i} skaltu finna andstæðu hvers liðs.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
Deildu í hvern lið í -1-\sqrt{5i} með 2 til að fá -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
Notaðu dreifieiginleika til að margfalda \sqrt{3} með -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
Jafnan er í staðalformi.
\frac{2xy}{2x}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
Deildu báðum hliðum með 2x.
y=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
Að deila með 2x afturkallar margföldun með 2x.
y=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8x}
Deildu \frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} með 2x.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}