Stuðull
\left(x-2\right)\left(x+1\right)\left(x+4\right)
Meta
\left(x-2\right)\left(x+1\right)\left(x+4\right)
Graf
Deila
Afritað á klemmuspjald
\left(x+4\right)\left(x^{2}-x-2\right)
Samkvæmt reglunni um ræðar rætur eru allar ræðar rætur margliða á forminu \frac{p}{q}, þar sem p deilir fastaliðnum -8 og q deilir forystustuðlinum 1. Ein slík rót er -4. Þáttaðu margliðuna með því að deila henni með x+4.
a+b=-1 ab=1\left(-2\right)=-2
Íhugaðu x^{2}-x-2. Þáttaðu segðina með því að flokka. Fyrst þarf að endurskrifa segðina sem x^{2}+ax+bx-2. Settu upp kerfi til að leysa til þess að finna a og b.
a=-2 b=1
Fyrst ab er mínus hafa a og b gagnstæð merki. Fyrst a+b er mínus hefur neikvæða talan hærra algildi en sú jákvæða. Eina slíka parið er kerfislausnin.
\left(x^{2}-2x\right)+\left(x-2\right)
Endurskrifa x^{2}-x-2 sem \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Taktux út fyrir sviga í x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Taktu sameiginlega liðinn x-2 út fyrir sviga með því að nota dreifieiginleika.
\left(x-2\right)\left(x+1\right)\left(x+4\right)
Endurskrifaðu alla þáttuðu segðina.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}