Beint í aðalefni
Stuðull
Tick mark Image
Meta
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

a+b=-1 ab=1\left(-6\right)=-6
Þáttaðu segðina með því að flokka. Fyrst þarf að endurskrifa segðina sem x^{2}+ax+bx-6. Settu upp kerfi til að leysa til þess að finna a og b.
1,-6 2,-3
Fyrst ab er mínus hafa a og b gagnstæð merki. Fyrst a+b er mínus hefur neikvæða talan hærra algildi en sú jákvæða. Skráðu inn öll slík pör sem gefa margfeldið -6.
1-6=-5 2-3=-1
Reiknaðu summuna fyrir hvert par.
a=-3 b=2
Lausnin er parið sem gefur summuna -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Endurskrifa x^{2}-x-6 sem \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Taktu x út fyrir sviga í fyrsta hópi og 2 í öðrum hópi.
\left(x-3\right)\left(x+2\right)
Taktu sameiginlega liðinn x-3 út fyrir sviga með því að nota dreifieiginleika.
x^{2}-x-6=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Margfaldaðu -4 sinnum -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Leggðu 1 saman við 24.
x=\frac{-\left(-1\right)±5}{2}
Finndu kvaðratrót 25.
x=\frac{1±5}{2}
Gagnstæð tala tölunnar -1 er 1.
x=\frac{6}{2}
Leystu nú jöfnuna x=\frac{1±5}{2} þegar ± er plús. Leggðu 1 saman við 5.
x=3
Deildu 6 með 2.
x=-\frac{4}{2}
Leystu nú jöfnuna x=\frac{1±5}{2} þegar ± er mínus. Dragðu 5 frá 1.
x=-2
Deildu -4 með 2.
x^{2}-x-6=\left(x-3\right)\left(x-\left(-2\right)\right)
Þættu upprunalegu segðina með ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Skiptu 3 út fyrir x_{1} og -2 út fyrir x_{2}.
x^{2}-x-6=\left(x-3\right)\left(x+2\right)
Einfaldaðu allar segðir formsins p-\left(-q\right) í p+q.