Leystu fyrir x
x=1
x=2
Graf
Deila
Afritað á klemmuspjald
a+b=-3 ab=2
Leystu jöfnuna með því að þátta x^{2}-3x+2 með formúlunni x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Settu upp kerfi til að leysa til þess að finna a og b.
a=-2 b=-1
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er mínus eru a og b bæði mínus. Eina slíka parið er kerfislausnin.
\left(x-2\right)\left(x-1\right)
Endurskrifaðu þáttuðu segðina \left(x+a\right)\left(x+b\right) með því að nota fengin gildi.
x=2 x=1
Leystu x-2=0 og x-1=0 til að finna lausnir jöfnunnar.
a+b=-3 ab=1\times 2=2
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem x^{2}+ax+bx+2. Settu upp kerfi til að leysa til þess að finna a og b.
a=-2 b=-1
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er mínus eru a og b bæði mínus. Eina slíka parið er kerfislausnin.
\left(x^{2}-2x\right)+\left(-x+2\right)
Endurskrifa x^{2}-3x+2 sem \left(x^{2}-2x\right)+\left(-x+2\right).
x\left(x-2\right)-\left(x-2\right)
Taktu x út fyrir sviga í fyrsta hópi og -1 í öðrum hópi.
\left(x-2\right)\left(x-1\right)
Taktu sameiginlega liðinn x-2 út fyrir sviga með því að nota dreifieiginleika.
x=2 x=1
Leystu x-2=0 og x-1=0 til að finna lausnir jöfnunnar.
x^{2}-3x+2=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, -3 inn fyrir b og 2 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2}
Hefðu -3 í annað veldi.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2}
Margfaldaðu -4 sinnum 2.
x=\frac{-\left(-3\right)±\sqrt{1}}{2}
Leggðu 9 saman við -8.
x=\frac{-\left(-3\right)±1}{2}
Finndu kvaðratrót 1.
x=\frac{3±1}{2}
Gagnstæð tala tölunnar -3 er 3.
x=\frac{4}{2}
Leystu nú jöfnuna x=\frac{3±1}{2} þegar ± er plús. Leggðu 3 saman við 1.
x=2
Deildu 4 með 2.
x=\frac{2}{2}
Leystu nú jöfnuna x=\frac{3±1}{2} þegar ± er mínus. Dragðu 1 frá 3.
x=1
Deildu 2 með 2.
x=2 x=1
Leyst var úr jöfnunni.
x^{2}-3x+2=0
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
x^{2}-3x+2-2=-2
Dragðu 2 frá báðum hliðum jöfnunar.
x^{2}-3x=-2
Ef 2 er dregið frá sjálfu sér verður 0 eftir.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Deildu -3, stuðli x-liðarins, með 2 til að fá -\frac{3}{2}. Leggðu síðan tvíveldi -\frac{3}{2} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Hefðu -\frac{3}{2} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Leggðu -2 saman við \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Stuðull x^{2}-3x+\frac{9}{4}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Finndu kvaðratrót beggja hliða jöfnunar.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Einfaldaðu.
x=2 x=1
Leggðu \frac{3}{2} saman við báðar hliðar jöfnunar.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}