Beint í aðalefni
Leystu fyrir x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

x\left(x-13\right)=0
Taktu x út fyrir sviga.
x=0 x=13
Leystu x=0 og x-13=0 til að finna lausnir jöfnunnar.
x^{2}-13x=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, -13 inn fyrir b og 0 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±13}{2}
Finndu kvaðratrót \left(-13\right)^{2}.
x=\frac{13±13}{2}
Gagnstæð tala tölunnar -13 er 13.
x=\frac{26}{2}
Leystu nú jöfnuna x=\frac{13±13}{2} þegar ± er plús. Leggðu 13 saman við 13.
x=13
Deildu 26 með 2.
x=\frac{0}{2}
Leystu nú jöfnuna x=\frac{13±13}{2} þegar ± er mínus. Dragðu 13 frá 13.
x=0
Deildu 0 með 2.
x=13 x=0
Leyst var úr jöfnunni.
x^{2}-13x=0
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=\left(-\frac{13}{2}\right)^{2}
Deildu -13, stuðli x-liðarins, með 2 til að fá -\frac{13}{2}. Leggðu síðan tvíveldi -\frac{13}{2} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}-13x+\frac{169}{4}=\frac{169}{4}
Hefðu -\frac{13}{2} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
\left(x-\frac{13}{2}\right)^{2}=\frac{169}{4}
Stuðull x^{2}-13x+\frac{169}{4}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Finndu kvaðratrót beggja hliða jöfnunar.
x-\frac{13}{2}=\frac{13}{2} x-\frac{13}{2}=-\frac{13}{2}
Einfaldaðu.
x=13 x=0
Leggðu \frac{13}{2} saman við báðar hliðar jöfnunar.