Beint í aðalefni
Stuðull
Tick mark Image
Meta
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

x^{2}+10x+5=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 5}}{2}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-10±\sqrt{100-4\times 5}}{2}
Hefðu 10 í annað veldi.
x=\frac{-10±\sqrt{100-20}}{2}
Margfaldaðu -4 sinnum 5.
x=\frac{-10±\sqrt{80}}{2}
Leggðu 100 saman við -20.
x=\frac{-10±4\sqrt{5}}{2}
Finndu kvaðratrót 80.
x=\frac{4\sqrt{5}-10}{2}
Leystu nú jöfnuna x=\frac{-10±4\sqrt{5}}{2} þegar ± er plús. Leggðu -10 saman við 4\sqrt{5}.
x=2\sqrt{5}-5
Deildu -10+4\sqrt{5} með 2.
x=\frac{-4\sqrt{5}-10}{2}
Leystu nú jöfnuna x=\frac{-10±4\sqrt{5}}{2} þegar ± er mínus. Dragðu 4\sqrt{5} frá -10.
x=-2\sqrt{5}-5
Deildu -10-4\sqrt{5} með 2.
x^{2}+10x+5=\left(x-\left(2\sqrt{5}-5\right)\right)\left(x-\left(-2\sqrt{5}-5\right)\right)
Þættu upprunalegu segðina með ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Skiptu -5+2\sqrt{5} út fyrir x_{1} og -5-2\sqrt{5} út fyrir x_{2}.