Leystu fyrir y
y=-\frac{4}{1-4x}
x\neq \frac{1}{4}
Leystu fyrir x
x=\frac{1}{4}+\frac{1}{y}
y\neq 0
Graf
Deila
Afritað á klemmuspjald
xy=\frac{1}{4}y+1
Breytan y getur ekki verið jöfn 0, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með y.
xy-\frac{1}{4}y=1
Dragðu \frac{1}{4}y frá báðum hliðum.
\left(x-\frac{1}{4}\right)y=1
Sameinaðu alla liði sem innihalda y.
\frac{\left(x-\frac{1}{4}\right)y}{x-\frac{1}{4}}=\frac{1}{x-\frac{1}{4}}
Deildu báðum hliðum með x-\frac{1}{4}.
y=\frac{1}{x-\frac{1}{4}}
Að deila með x-\frac{1}{4} afturkallar margföldun með x-\frac{1}{4}.
y=\frac{4}{4x-1}
Deildu 1 með x-\frac{1}{4}.
y=\frac{4}{4x-1}\text{, }y\neq 0
Breytan y getur ekki verið jöfn 0.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}