Beint í aðalefni
Leystu fyrir x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

xx+x\times 5=-6
Breytan x getur ekki verið jöfn 0, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með x.
x^{2}+x\times 5=-6
Margfaldaðu x og x til að fá út x^{2}.
x^{2}+x\times 5+6=0
Bættu 6 við báðar hliðar.
x^{2}+5x+6=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, 5 inn fyrir b og 6 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Hefðu 5 í annað veldi.
x=\frac{-5±\sqrt{25-24}}{2}
Margfaldaðu -4 sinnum 6.
x=\frac{-5±\sqrt{1}}{2}
Leggðu 25 saman við -24.
x=\frac{-5±1}{2}
Finndu kvaðratrót 1.
x=-\frac{4}{2}
Leystu nú jöfnuna x=\frac{-5±1}{2} þegar ± er plús. Leggðu -5 saman við 1.
x=-2
Deildu -4 með 2.
x=-\frac{6}{2}
Leystu nú jöfnuna x=\frac{-5±1}{2} þegar ± er mínus. Dragðu 1 frá -5.
x=-3
Deildu -6 með 2.
x=-2 x=-3
Leyst var úr jöfnunni.
xx+x\times 5=-6
Breytan x getur ekki verið jöfn 0, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með x.
x^{2}+x\times 5=-6
Margfaldaðu x og x til að fá út x^{2}.
x^{2}+5x=-6
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Deildu 5, stuðli x-liðarins, með 2 til að fá \frac{5}{2}. Leggðu síðan tvíveldi \frac{5}{2} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Hefðu \frac{5}{2} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Leggðu -6 saman við \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Stuðull x^{2}+5x+\frac{25}{4}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Finndu kvaðratrót beggja hliða jöfnunar.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Einfaldaðu.
x=-2 x=-3
Dragðu \frac{5}{2} frá báðum hliðum jöfnunar.