Beint í aðalefni
Leystu fyrir v
Tick mark Image

Svipuð vandamál úr vefleit

Deila

v^{2}-4v=-13
Dragðu 4v frá báðum hliðum.
v^{2}-4v+13=0
Bættu 13 við báðar hliðar.
v=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 13}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, -4 inn fyrir b og 13 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-4\right)±\sqrt{16-4\times 13}}{2}
Hefðu -4 í annað veldi.
v=\frac{-\left(-4\right)±\sqrt{16-52}}{2}
Margfaldaðu -4 sinnum 13.
v=\frac{-\left(-4\right)±\sqrt{-36}}{2}
Leggðu 16 saman við -52.
v=\frac{-\left(-4\right)±6i}{2}
Finndu kvaðratrót -36.
v=\frac{4±6i}{2}
Gagnstæð tala tölunnar -4 er 4.
v=\frac{4+6i}{2}
Leystu nú jöfnuna v=\frac{4±6i}{2} þegar ± er plús. Leggðu 4 saman við 6i.
v=2+3i
Deildu 4+6i með 2.
v=\frac{4-6i}{2}
Leystu nú jöfnuna v=\frac{4±6i}{2} þegar ± er mínus. Dragðu 6i frá 4.
v=2-3i
Deildu 4-6i með 2.
v=2+3i v=2-3i
Leyst var úr jöfnunni.
v^{2}-4v=-13
Dragðu 4v frá báðum hliðum.
v^{2}-4v+\left(-2\right)^{2}=-13+\left(-2\right)^{2}
Deildu -4, stuðli x-liðarins, með 2 til að fá -2. Leggðu síðan tvíveldi -2 við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
v^{2}-4v+4=-13+4
Hefðu -2 í annað veldi.
v^{2}-4v+4=-9
Leggðu -13 saman við 4.
\left(v-2\right)^{2}=-9
Stuðull v^{2}-4v+4. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-2\right)^{2}}=\sqrt{-9}
Finndu kvaðratrót beggja hliða jöfnunar.
v-2=3i v-2=-3i
Einfaldaðu.
v=2+3i v=2-3i
Leggðu 2 saman við báðar hliðar jöfnunar.