Leystu fyrir b (complex solution)
\left\{\begin{matrix}b=\frac{r}{45a^{2}}\text{, }&a\neq 0\\b\in \mathrm{C}\text{, }&r=0\text{ and }a=0\end{matrix}\right.
Leystu fyrir b
\left\{\begin{matrix}b=\frac{r}{45a^{2}}\text{, }&a\neq 0\\b\in \mathrm{R}\text{, }&r=0\text{ and }a=0\end{matrix}\right.
Leystu fyrir a (complex solution)
\left\{\begin{matrix}a=-\frac{b^{-\frac{1}{2}}\sqrt{5r}}{15}\text{; }a=\frac{b^{-\frac{1}{2}}\sqrt{5r}}{15}\text{, }&b\neq 0\\a\in \mathrm{C}\text{, }&r=0\text{ and }b=0\end{matrix}\right.
Leystu fyrir a
\left\{\begin{matrix}a=\frac{\sqrt{\frac{5r}{b}}}{15}\text{; }a=-\frac{\sqrt{\frac{5r}{b}}}{15}\text{, }&\left(r\geq 0\text{ and }b>0\right)\text{ or }\left(r\leq 0\text{ and }b<0\right)\\a\in \mathrm{R}\text{, }&r=0\text{ and }b=0\end{matrix}\right.
Graf
Spurningakeppni
Algebra
5 vandamál svipuð og:
r = 3 a \cdot 3 ( 5 a b ) =
Deila
Afritað á klemmuspjald
r=3a^{2}\times 3\times 5b
Margfaldaðu a og a til að fá út a^{2}.
r=9a^{2}\times 5b
Margfaldaðu 3 og 3 til að fá út 9.
r=45a^{2}b
Margfaldaðu 9 og 5 til að fá út 45.
45a^{2}b=r
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
\frac{45a^{2}b}{45a^{2}}=\frac{r}{45a^{2}}
Deildu báðum hliðum með 45a^{2}.
b=\frac{r}{45a^{2}}
Að deila með 45a^{2} afturkallar margföldun með 45a^{2}.
r=3a^{2}\times 3\times 5b
Margfaldaðu a og a til að fá út a^{2}.
r=9a^{2}\times 5b
Margfaldaðu 3 og 3 til að fá út 9.
r=45a^{2}b
Margfaldaðu 9 og 5 til að fá út 45.
45a^{2}b=r
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
\frac{45a^{2}b}{45a^{2}}=\frac{r}{45a^{2}}
Deildu báðum hliðum með 45a^{2}.
b=\frac{r}{45a^{2}}
Að deila með 45a^{2} afturkallar margföldun með 45a^{2}.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}