Leystu fyrir Z_α (complex solution)
Z_{α}=\frac{-2Z_{β}-\sqrt{6\left(\ln(\frac{r+1}{1-r})n-2\right)}}{2}
Z_{α}=\frac{-2Z_{β}+\sqrt{6\left(\ln(\frac{r+1}{1-r})n-2\right)}}{2}\text{, }r\neq -1\text{ and }r\neq 1\text{ and }r\neq 0
Leystu fyrir Z_β (complex solution)
Z_{β}=\frac{-2Z_{α}-\sqrt{6\left(\ln(\frac{r+1}{1-r})n-2\right)}}{2}
Z_{β}=\frac{-2Z_{α}+\sqrt{6\left(\ln(\frac{r+1}{1-r})n-2\right)}}{2}\text{, }r\neq -1\text{ and }r\neq 1\text{ and }r\neq 0
Leystu fyrir Z_α
\left\{\begin{matrix}Z_{α}=\frac{-2Z_{β}-\sqrt{6\left(\ln(\frac{r+1}{1-r})n-2\right)}}{2}\text{; }Z_{α}=\frac{-2Z_{β}+\sqrt{6\left(\ln(\frac{r+1}{1-r})n-2\right)}}{2}\text{, }&\left(r>-1\text{ and }r<0\text{ and }n\leq \frac{2}{\ln(\frac{r+1}{1-r})}\right)\text{ or }\left(r>0\text{ and }r<1\text{ and }n\geq \frac{2}{\ln(\frac{r+1}{1-r})}\right)\\Z_{α}=-Z_{β}\text{, }&r\neq 0\text{ and }n=\frac{2}{\ln(\frac{r+1}{1-r})}\text{ and }r>-1\text{ and }|r|<1\end{matrix}\right.
Leystu fyrir Z_β
\left\{\begin{matrix}Z_{β}=\frac{-2Z_{α}-\sqrt{6\left(\ln(\frac{r+1}{1-r})n-2\right)}}{2}\text{; }Z_{β}=\frac{-2Z_{α}+\sqrt{6\left(\ln(\frac{r+1}{1-r})n-2\right)}}{2}\text{, }&\left(r>-1\text{ and }r<0\text{ and }n\leq \frac{2}{\ln(\frac{r+1}{1-r})}\right)\text{ or }\left(r>0\text{ and }r<1\text{ and }n\geq \frac{2}{\ln(\frac{r+1}{1-r})}\right)\\Z_{β}=-Z_{α}\text{, }&r\neq 0\text{ and }n=\frac{2}{\ln(\frac{r+1}{1-r})}\text{ and }r>-1\text{ and }|r|<1\end{matrix}\right.
Spurningakeppni
Algebra
5 vandamál svipuð og:
n = \frac { ( Z _ { \alpha } + Z _ { \beta } ) ^ { 2 } + 3 } { 1.5 \ln [ ( 1 + r ) / ( 1 - r ) ] }
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}