Beint í aðalefni
Meta
Tick mark Image
Diffra með hliðsjón af x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

\frac{3x^{3}}{x\left(x+1\right)}
Þættaðu segðir sem hafa ekki þegar verið þættaðar.
\frac{3x^{2}}{x+1}
Styttu burt x í bæði teljara og samnefnara.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3})-3x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Fyrir hver tvö diffranleg föll er afleiða hlutfalls tveggja falla samnefnarinn sinnum afleiða teljarans mínus teljarinn sinnum afleiða samnefnarans og deilt í útkomuna samnefnaranum í öðru veldi.
\frac{\left(x^{2}+x^{1}\right)\times 3\times 3x^{3-1}-3x^{3}\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Afleiða margliðu er summa afleiðna liðanna. Afleiða fastaliða er 0. Afleiða ax^{n} er nax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)\times 9x^{2}-3x^{3}\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Einfaldaðu.
\frac{x^{2}\times 9x^{2}+x^{1}\times 9x^{2}-3x^{3}\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Margfaldaðu x^{2}+x^{1} sinnum 9x^{2}.
\frac{x^{2}\times 9x^{2}+x^{1}\times 9x^{2}-\left(3x^{3}\times 2x^{1}+3x^{3}x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Margfaldaðu 3x^{3} sinnum 2x^{1}+x^{0}.
\frac{9x^{2+2}+9x^{1+2}-\left(3\times 2x^{3+1}+3x^{3}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Leggðu saman veldisvísa velda með sama stofn til að margfalda þau.
\frac{9x^{4}+9x^{3}-\left(6x^{4}+3x^{3}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Einfaldaðu.
\frac{3x^{4}+6x^{3}}{\left(x^{2}+x^{1}\right)^{2}}
Sameina svipaða liði.
\frac{3x^{4}+6x^{3}}{\left(x^{2}+x\right)^{2}}
Fyrir alla liði t, t^{1}=t.