Stuðull
\left(a-6\right)\left(a+2\right)
Meta
\left(a-6\right)\left(a+2\right)
Spurningakeppni
Polynomial
5 vandamál svipuð og:
a ^ { 2 } - 4 a - 12
Deila
Afritað á klemmuspjald
p+q=-4 pq=1\left(-12\right)=-12
Þáttaðu segðina með því að flokka. Fyrst þarf að endurskrifa segðina sem a^{2}+pa+qa-12. Settu upp kerfi til að leysa til þess að finna p og q.
1,-12 2,-6 3,-4
Fyrst pq er mínus hafa p og q gagnstæð merki. Fyrst p+q er mínus hefur neikvæða talan hærra algildi en sú jákvæða. Skráðu inn öll slík pör sem gefa margfeldið -12.
1-12=-11 2-6=-4 3-4=-1
Reiknaðu summuna fyrir hvert par.
p=-6 q=2
Lausnin er parið sem gefur summuna -4.
\left(a^{2}-6a\right)+\left(2a-12\right)
Endurskrifa a^{2}-4a-12 sem \left(a^{2}-6a\right)+\left(2a-12\right).
a\left(a-6\right)+2\left(a-6\right)
Taktu a út fyrir sviga í fyrsta hópi og 2 í öðrum hópi.
\left(a-6\right)\left(a+2\right)
Taktu sameiginlega liðinn a-6 út fyrir sviga með því að nota dreifieiginleika.
a^{2}-4a-12=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Hefðu -4 í annað veldi.
a=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Margfaldaðu -4 sinnum -12.
a=\frac{-\left(-4\right)±\sqrt{64}}{2}
Leggðu 16 saman við 48.
a=\frac{-\left(-4\right)±8}{2}
Finndu kvaðratrót 64.
a=\frac{4±8}{2}
Gagnstæð tala tölunnar -4 er 4.
a=\frac{12}{2}
Leystu nú jöfnuna a=\frac{4±8}{2} þegar ± er plús. Leggðu 4 saman við 8.
a=6
Deildu 12 með 2.
a=-\frac{4}{2}
Leystu nú jöfnuna a=\frac{4±8}{2} þegar ± er mínus. Dragðu 8 frá 4.
a=-2
Deildu -4 með 2.
a^{2}-4a-12=\left(a-6\right)\left(a-\left(-2\right)\right)
Þættu upprunalegu segðina með ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Skiptu 6 út fyrir x_{1} og -2 út fyrir x_{2}.
a^{2}-4a-12=\left(a-6\right)\left(a+2\right)
Einfaldaðu allar segðir formsins p-\left(-q\right) í p+q.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}