Leystu fyrir E
E=\frac{DE_{9}+5}{D^{2}}
D\neq 0
Leystu fyrir D (complex solution)
\left\{\begin{matrix}D=-\frac{\sqrt{20E+E_{9}^{2}}-E_{9}}{2E}\text{; }D=\frac{\sqrt{20E+E_{9}^{2}}+E_{9}}{2E}\text{, }&E\neq 0\\D=-\frac{5}{E_{9}}\text{, }&E=0\text{ and }E_{9}\neq 0\end{matrix}\right.
Leystu fyrir D
\left\{\begin{matrix}D=-\frac{\sqrt{20E+E_{9}^{2}}-E_{9}}{2E}\text{; }D=\frac{\sqrt{20E+E_{9}^{2}}+E_{9}}{2E}\text{, }&E\neq 0\text{ and }E\geq -\frac{E_{9}^{2}}{20}\\D=-\frac{5}{E_{9}}\text{, }&E=0\text{ and }E_{9}\neq 0\end{matrix}\right.
Spurningakeppni
Algebra
5 vandamál svipuð og:
D E 9 + 5 = D D E
Deila
Afritað á klemmuspjald
DE_{9}+5=D^{2}E
Margfaldaðu D og D til að fá út D^{2}.
D^{2}E=DE_{9}+5
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
\frac{D^{2}E}{D^{2}}=\frac{DE_{9}+5}{D^{2}}
Deildu báðum hliðum með D^{2}.
E=\frac{DE_{9}+5}{D^{2}}
Að deila með D^{2} afturkallar margföldun með D^{2}.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}