Beint í aðalefni
Leystu fyrir x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

0.0149x^{2}+8.314x-1000=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-8.314±\sqrt{8.314^{2}-4\times 0.0149\left(-1000\right)}}{2\times 0.0149}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 0.0149 inn fyrir a, 8.314 inn fyrir b og -1000 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8.314±\sqrt{69.122596-4\times 0.0149\left(-1000\right)}}{2\times 0.0149}
Hefðu 8.314 í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x=\frac{-8.314±\sqrt{69.122596-0.0596\left(-1000\right)}}{2\times 0.0149}
Margfaldaðu -4 sinnum 0.0149.
x=\frac{-8.314±\sqrt{69.122596+59.6}}{2\times 0.0149}
Margfaldaðu -0.0596 sinnum -1000.
x=\frac{-8.314±\sqrt{128.722596}}{2\times 0.0149}
Leggðu 69.122596 saman við 59.6 með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
x=\frac{-8.314±\frac{\sqrt{32180649}}{500}}{2\times 0.0149}
Finndu kvaðratrót 128.722596.
x=\frac{-8.314±\frac{\sqrt{32180649}}{500}}{0.0298}
Margfaldaðu 2 sinnum 0.0149.
x=\frac{\sqrt{32180649}-4157}{0.0298\times 500}
Leystu nú jöfnuna x=\frac{-8.314±\frac{\sqrt{32180649}}{500}}{0.0298} þegar ± er plús. Leggðu -8.314 saman við \frac{\sqrt{32180649}}{500}.
x=\frac{10\sqrt{32180649}-41570}{149}
Deildu \frac{-4157+\sqrt{32180649}}{500} með 0.0298 með því að margfalda \frac{-4157+\sqrt{32180649}}{500} með umhverfu 0.0298.
x=\frac{-\sqrt{32180649}-4157}{0.0298\times 500}
Leystu nú jöfnuna x=\frac{-8.314±\frac{\sqrt{32180649}}{500}}{0.0298} þegar ± er mínus. Dragðu \frac{\sqrt{32180649}}{500} frá -8.314.
x=\frac{-10\sqrt{32180649}-41570}{149}
Deildu \frac{-4157-\sqrt{32180649}}{500} með 0.0298 með því að margfalda \frac{-4157-\sqrt{32180649}}{500} með umhverfu 0.0298.
x=\frac{10\sqrt{32180649}-41570}{149} x=\frac{-10\sqrt{32180649}-41570}{149}
Leyst var úr jöfnunni.
0.0149x^{2}+8.314x-1000=0
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
0.0149x^{2}+8.314x-1000-\left(-1000\right)=-\left(-1000\right)
Leggðu 1000 saman við báðar hliðar jöfnunar.
0.0149x^{2}+8.314x=-\left(-1000\right)
Ef -1000 er dregið frá sjálfu sér verður 0 eftir.
0.0149x^{2}+8.314x=1000
Dragðu -1000 frá 0.
\frac{0.0149x^{2}+8.314x}{0.0149}=\frac{1000}{0.0149}
Deildu í báðar hliðar jöfnunar með 0.0149. Þetta skilar sömu niðurstöðu og að margfalda báðar hliðar með margföldunarandhverfu brotsins.
x^{2}+\frac{8.314}{0.0149}x=\frac{1000}{0.0149}
Að deila með 0.0149 afturkallar margföldun með 0.0149.
x^{2}+\frac{83140}{149}x=\frac{1000}{0.0149}
Deildu 8.314 með 0.0149 með því að margfalda 8.314 með umhverfu 0.0149.
x^{2}+\frac{83140}{149}x=\frac{10000000}{149}
Deildu 1000 með 0.0149 með því að margfalda 1000 með umhverfu 0.0149.
x^{2}+\frac{83140}{149}x+\frac{41570}{149}^{2}=\frac{10000000}{149}+\frac{41570}{149}^{2}
Deildu \frac{83140}{149}, stuðli x-liðarins, með 2 til að fá \frac{41570}{149}. Leggðu síðan tvíveldi \frac{41570}{149} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}+\frac{83140}{149}x+\frac{1728064900}{22201}=\frac{10000000}{149}+\frac{1728064900}{22201}
Hefðu \frac{41570}{149} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}+\frac{83140}{149}x+\frac{1728064900}{22201}=\frac{3218064900}{22201}
Leggðu \frac{10000000}{149} saman við \frac{1728064900}{22201} með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
\left(x+\frac{41570}{149}\right)^{2}=\frac{3218064900}{22201}
Stuðull x^{2}+\frac{83140}{149}x+\frac{1728064900}{22201}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{41570}{149}\right)^{2}}=\sqrt{\frac{3218064900}{22201}}
Finndu kvaðratrót beggja hliða jöfnunar.
x+\frac{41570}{149}=\frac{10\sqrt{32180649}}{149} x+\frac{41570}{149}=-\frac{10\sqrt{32180649}}{149}
Einfaldaðu.
x=\frac{10\sqrt{32180649}-41570}{149} x=\frac{-10\sqrt{32180649}-41570}{149}
Dragðu \frac{41570}{149} frá báðum hliðum jöfnunar.