Leystu fyrir f
f=\frac{3}{2\left(23x+36\right)}
x\neq -\frac{36}{23}
Leystu fyrir x
x=-\frac{36}{23}+\frac{3}{46f}
f\neq 0
Graf
Deila
Afritað á klemmuspjald
48fx+72f=2fx+3
Notaðu dreifieiginleika til að margfalda 24f með 2x+3.
48fx+72f-2fx=3
Dragðu 2fx frá báðum hliðum.
46fx+72f=3
Sameinaðu 48fx og -2fx til að fá 46fx.
\left(46x+72\right)f=3
Sameinaðu alla liði sem innihalda f.
\frac{\left(46x+72\right)f}{46x+72}=\frac{3}{46x+72}
Deildu báðum hliðum með 46x+72.
f=\frac{3}{46x+72}
Að deila með 46x+72 afturkallar margföldun með 46x+72.
f=\frac{3}{2\left(23x+36\right)}
Deildu 3 með 46x+72.
48xf+72f=2fx+3
Notaðu dreifieiginleika til að margfalda 24f með 2x+3.
48xf+72f-2fx=3
Dragðu 2fx frá báðum hliðum.
46xf+72f=3
Sameinaðu 48xf og -2fx til að fá 46xf.
46xf=3-72f
Dragðu 72f frá báðum hliðum.
46fx=3-72f
Jafnan er í staðalformi.
\frac{46fx}{46f}=\frac{3-72f}{46f}
Deildu báðum hliðum með 46f.
x=\frac{3-72f}{46f}
Að deila með 46f afturkallar margföldun með 46f.
x=-\frac{36}{23}+\frac{3}{46f}
Deildu 3-72f með 46f.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}