Stuðull
2x\left(x+3\right)\left(x+4\right)
Meta
2x\left(x+3\right)\left(x+4\right)
Graf
Deila
Afritað á klemmuspjald
2\left(x^{3}+7x^{2}+12x\right)
Taktu 2 út fyrir sviga.
x\left(x^{2}+7x+12\right)
Íhugaðu x^{3}+7x^{2}+12x. Taktu x út fyrir sviga.
a+b=7 ab=1\times 12=12
Íhugaðu x^{2}+7x+12. Þáttaðu segðina með því að flokka. Fyrst þarf að endurskrifa segðina sem x^{2}+ax+bx+12. Settu upp kerfi til að leysa til þess að finna a og b.
1,12 2,6 3,4
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er plús eru a og b bæði plús. Skráðu inn öll slík pör sem gefa margfeldið 12.
1+12=13 2+6=8 3+4=7
Reiknaðu summuna fyrir hvert par.
a=3 b=4
Lausnin er parið sem gefur summuna 7.
\left(x^{2}+3x\right)+\left(4x+12\right)
Endurskrifa x^{2}+7x+12 sem \left(x^{2}+3x\right)+\left(4x+12\right).
x\left(x+3\right)+4\left(x+3\right)
Taktu x út fyrir sviga í fyrsta hópi og 4 í öðrum hópi.
\left(x+3\right)\left(x+4\right)
Taktu sameiginlega liðinn x+3 út fyrir sviga með því að nota dreifieiginleika.
2x\left(x+3\right)\left(x+4\right)
Endurskrifaðu alla þáttuðu segðina.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}