Beint í aðalefni
Leystu fyrir x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

2x^{2}+3x-12+7=0
Bættu 7 við báðar hliðar.
2x^{2}+3x-5=0
Leggðu saman -12 og 7 til að fá -5.
a+b=3 ab=2\left(-5\right)=-10
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem 2x^{2}+ax+bx-5. Settu upp kerfi til að leysa til þess að finna a og b.
-1,10 -2,5
Fyrst ab er mínus hafa a og b gagnstæð merki. Fyrst a+b er plús er plústalan hærri en mínustalan. Skráðu inn öll slík pör sem gefa margfeldið -10.
-1+10=9 -2+5=3
Reiknaðu summuna fyrir hvert par.
a=-2 b=5
Lausnin er parið sem gefur summuna 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
Endurskrifa 2x^{2}+3x-5 sem \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
Taktu 2x út fyrir sviga í fyrsta hópi og 5 í öðrum hópi.
\left(x-1\right)\left(2x+5\right)
Taktu sameiginlega liðinn x-1 út fyrir sviga með því að nota dreifieiginleika.
x=1 x=-\frac{5}{2}
Leystu x-1=0 og 2x+5=0 til að finna lausnir jöfnunnar.
2x^{2}+3x-12=-7
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
2x^{2}+3x-12-\left(-7\right)=-7-\left(-7\right)
Leggðu 7 saman við báðar hliðar jöfnunar.
2x^{2}+3x-12-\left(-7\right)=0
Ef -7 er dregið frá sjálfu sér verður 0 eftir.
2x^{2}+3x-5=0
Dragðu -7 frá -12.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 2 inn fyrir a, 3 inn fyrir b og -5 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Hefðu 3 í annað veldi.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Margfaldaðu -4 sinnum 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Margfaldaðu -8 sinnum -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Leggðu 9 saman við 40.
x=\frac{-3±7}{2\times 2}
Finndu kvaðratrót 49.
x=\frac{-3±7}{4}
Margfaldaðu 2 sinnum 2.
x=\frac{4}{4}
Leystu nú jöfnuna x=\frac{-3±7}{4} þegar ± er plús. Leggðu -3 saman við 7.
x=1
Deildu 4 með 4.
x=-\frac{10}{4}
Leystu nú jöfnuna x=\frac{-3±7}{4} þegar ± er mínus. Dragðu 7 frá -3.
x=-\frac{5}{2}
Minnka brotið \frac{-10}{4} eins mikið og hægt er með því að draga og stytta út 2.
x=1 x=-\frac{5}{2}
Leyst var úr jöfnunni.
2x^{2}+3x-12=-7
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
2x^{2}+3x-12-\left(-12\right)=-7-\left(-12\right)
Leggðu 12 saman við báðar hliðar jöfnunar.
2x^{2}+3x=-7-\left(-12\right)
Ef -12 er dregið frá sjálfu sér verður 0 eftir.
2x^{2}+3x=5
Dragðu -12 frá -7.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Deildu báðum hliðum með 2.
x^{2}+\frac{3}{2}x=\frac{5}{2}
Að deila með 2 afturkallar margföldun með 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Deildu \frac{3}{2}, stuðli x-liðarins, með 2 til að fá \frac{3}{4}. Leggðu síðan tvíveldi \frac{3}{4} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Hefðu \frac{3}{4} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Leggðu \frac{5}{2} saman við \frac{9}{16} með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Stuðull x^{2}+\frac{3}{2}x+\frac{9}{16}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Finndu kvaðratrót beggja hliða jöfnunar.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Einfaldaðu.
x=1 x=-\frac{5}{2}
Dragðu \frac{3}{4} frá báðum hliðum jöfnunar.