Beint í aðalefni
Leystu fyrir a
Tick mark Image

Svipuð vandamál úr vefleit

Deila

a^{2}-6a+9=0
Deildu báðum hliðum með 2.
a+b=-6 ab=1\times 9=9
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem a^{2}+aa+ba+9. Settu upp kerfi til að leysa til þess að finna a og b.
-1,-9 -3,-3
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er mínus eru a og b bæði mínus. Skráðu inn öll slík pör sem gefa margfeldið 9.
-1-9=-10 -3-3=-6
Reiknaðu summuna fyrir hvert par.
a=-3 b=-3
Lausnin er parið sem gefur summuna -6.
\left(a^{2}-3a\right)+\left(-3a+9\right)
Endurskrifa a^{2}-6a+9 sem \left(a^{2}-3a\right)+\left(-3a+9\right).
a\left(a-3\right)-3\left(a-3\right)
Taktu a út fyrir sviga í fyrsta hópi og -3 í öðrum hópi.
\left(a-3\right)\left(a-3\right)
Taktu sameiginlega liðinn a-3 út fyrir sviga með því að nota dreifieiginleika.
\left(a-3\right)^{2}
Endurraðaðu sem tvíliðu öðru veldi.
a=3
Leystu a-3=0 til að finna lausnir jöfnunnar.
2a^{2}-12a+18=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
a=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 2 inn fyrir a, -12 inn fyrir b og 18 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
Hefðu -12 í annað veldi.
a=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
Margfaldaðu -4 sinnum 2.
a=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
Margfaldaðu -8 sinnum 18.
a=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
Leggðu 144 saman við -144.
a=-\frac{-12}{2\times 2}
Finndu kvaðratrót 0.
a=\frac{12}{2\times 2}
Gagnstæð tala tölunnar -12 er 12.
a=\frac{12}{4}
Margfaldaðu 2 sinnum 2.
a=3
Deildu 12 með 4.
2a^{2}-12a+18=0
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
2a^{2}-12a+18-18=-18
Dragðu 18 frá báðum hliðum jöfnunar.
2a^{2}-12a=-18
Ef 18 er dregið frá sjálfu sér verður 0 eftir.
\frac{2a^{2}-12a}{2}=-\frac{18}{2}
Deildu báðum hliðum með 2.
a^{2}+\left(-\frac{12}{2}\right)a=-\frac{18}{2}
Að deila með 2 afturkallar margföldun með 2.
a^{2}-6a=-\frac{18}{2}
Deildu -12 með 2.
a^{2}-6a=-9
Deildu -18 með 2.
a^{2}-6a+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Deildu -6, stuðli x-liðarins, með 2 til að fá -3. Leggðu síðan tvíveldi -3 við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
a^{2}-6a+9=-9+9
Hefðu -3 í annað veldi.
a^{2}-6a+9=0
Leggðu -9 saman við 9.
\left(a-3\right)^{2}=0
Stuðull a^{2}-6a+9. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-3\right)^{2}}=\sqrt{0}
Finndu kvaðratrót beggja hliða jöfnunar.
a-3=0 a-3=0
Einfaldaðu.
a=3 a=3
Leggðu 3 saman við báðar hliðar jöfnunar.
a=3
Leyst var úr jöfnunni. Lausnirnar eru eins.