Leystu fyrir x
x=3
Graf
Deila
Afritað á klemmuspjald
2-3x\left(4-x\right)-x^{2}=-16
Dragðu x^{2} frá báðum hliðum.
2-3x\left(4-x\right)-x^{2}+16=0
Bættu 16 við báðar hliðar.
2-12x+3x^{2}-x^{2}+16=0
Notaðu dreifieiginleika til að margfalda -3x með 4-x.
2-12x+2x^{2}+16=0
Sameinaðu 3x^{2} og -x^{2} til að fá 2x^{2}.
18-12x+2x^{2}=0
Leggðu saman 2 og 16 til að fá 18.
9-6x+x^{2}=0
Deildu báðum hliðum með 2.
x^{2}-6x+9=0
Endurraðaðu margliðunni til að setja hana í staðlað form. Raðaðu liðunum frá hæsta til lægsta veldis.
a+b=-6 ab=1\times 9=9
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem x^{2}+ax+bx+9. Settu upp kerfi til að leysa til þess að finna a og b.
-1,-9 -3,-3
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er mínus eru a og b bæði mínus. Skráðu inn öll slík pör sem gefa margfeldið 9.
-1-9=-10 -3-3=-6
Reiknaðu summuna fyrir hvert par.
a=-3 b=-3
Lausnin er parið sem gefur summuna -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Endurskrifa x^{2}-6x+9 sem \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Taktu x út fyrir sviga í fyrsta hópi og -3 í öðrum hópi.
\left(x-3\right)\left(x-3\right)
Taktu sameiginlega liðinn x-3 út fyrir sviga með því að nota dreifieiginleika.
\left(x-3\right)^{2}
Endurraðaðu sem tvíliðu öðru veldi.
x=3
Leystu x-3=0 til að finna lausnir jöfnunnar.
2-3x\left(4-x\right)-x^{2}=-16
Dragðu x^{2} frá báðum hliðum.
2-3x\left(4-x\right)-x^{2}+16=0
Bættu 16 við báðar hliðar.
2-12x+3x^{2}-x^{2}+16=0
Notaðu dreifieiginleika til að margfalda -3x með 4-x.
2-12x+2x^{2}+16=0
Sameinaðu 3x^{2} og -x^{2} til að fá 2x^{2}.
18-12x+2x^{2}=0
Leggðu saman 2 og 16 til að fá 18.
2x^{2}-12x+18=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 2 inn fyrir a, -12 inn fyrir b og 18 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
Hefðu -12 í annað veldi.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
Margfaldaðu -4 sinnum 2.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
Margfaldaðu -8 sinnum 18.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
Leggðu 144 saman við -144.
x=-\frac{-12}{2\times 2}
Finndu kvaðratrót 0.
x=\frac{12}{2\times 2}
Gagnstæð tala tölunnar -12 er 12.
x=\frac{12}{4}
Margfaldaðu 2 sinnum 2.
x=3
Deildu 12 með 4.
2-3x\left(4-x\right)-x^{2}=-16
Dragðu x^{2} frá báðum hliðum.
2-12x+3x^{2}-x^{2}=-16
Notaðu dreifieiginleika til að margfalda -3x með 4-x.
2-12x+2x^{2}=-16
Sameinaðu 3x^{2} og -x^{2} til að fá 2x^{2}.
-12x+2x^{2}=-16-2
Dragðu 2 frá báðum hliðum.
-12x+2x^{2}=-18
Dragðu 2 frá -16 til að fá út -18.
2x^{2}-12x=-18
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
\frac{2x^{2}-12x}{2}=-\frac{18}{2}
Deildu báðum hliðum með 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{18}{2}
Að deila með 2 afturkallar margföldun með 2.
x^{2}-6x=-\frac{18}{2}
Deildu -12 með 2.
x^{2}-6x=-9
Deildu -18 með 2.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Deildu -6, stuðli x-liðarins, með 2 til að fá -3. Leggðu síðan tvíveldi -3 við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}-6x+9=-9+9
Hefðu -3 í annað veldi.
x^{2}-6x+9=0
Leggðu -9 saman við 9.
\left(x-3\right)^{2}=0
Stuðull x^{2}-6x+9. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Finndu kvaðratrót beggja hliða jöfnunar.
x-3=0 x-3=0
Einfaldaðu.
x=3 x=3
Leggðu 3 saman við báðar hliðar jöfnunar.
x=3
Leyst var úr jöfnunni. Lausnirnar eru eins.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}