Leystu fyrir x (complex solution)
x=\frac{-\sqrt{29}i+1}{2}\approx 0.5-2.692582404i
x=-4
x=\frac{1+\sqrt{29}i}{2}\approx 0.5+2.692582404i
Leystu fyrir x
x=-4
Graf
Deila
Afritað á klemmuspjald
±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Samkvæmt reglunni um ræðar rætur eru allar ræðar rætur margliða á forminu \frac{p}{q}, þar sem p deilir fastaliðnum 60 og q deilir forystustuðlinum 2. Teldu upp alla möguleika fyrir \frac{p}{q}.
x=-4
Finndu eina slíka rót með því að prófa öll heiltölugildi frá og með lægsta algildinu. Ef engar heiltölurætur finnast skaltu reyna tugabrot.
2x^{2}-2x+15=0
Samkvæmt reglunni um þætti er x-k þáttur margliðu fyrir hverja rót k. Deildu 2x^{3}+6x^{2}+7x+60 með x+4 til að fá 2x^{2}-2x+15. Leystu jöfnuna þar sem niðurstaðan jafngildir 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Skiptu út 2 fyrir a, -2 fyrir b og 15 fyrir c í annars stigs formúlunni.
x=\frac{2±\sqrt{-116}}{4}
Reiknaðu.
x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Leystu jöfnuna 2x^{2}-2x+15=0 þegar ± er plús og þegar ± er mínus.
x=-4 x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Birta allar fundnar lausnir.
±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Samkvæmt reglunni um ræðar rætur eru allar ræðar rætur margliða á forminu \frac{p}{q}, þar sem p deilir fastaliðnum 60 og q deilir forystustuðlinum 2. Teldu upp alla möguleika fyrir \frac{p}{q}.
x=-4
Finndu eina slíka rót með því að prófa öll heiltölugildi frá og með lægsta algildinu. Ef engar heiltölurætur finnast skaltu reyna tugabrot.
2x^{2}-2x+15=0
Samkvæmt reglunni um þætti er x-k þáttur margliðu fyrir hverja rót k. Deildu 2x^{3}+6x^{2}+7x+60 með x+4 til að fá 2x^{2}-2x+15. Leystu jöfnuna þar sem niðurstaðan jafngildir 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Skiptu út 2 fyrir a, -2 fyrir b og 15 fyrir c í annars stigs formúlunni.
x=\frac{2±\sqrt{-116}}{4}
Reiknaðu.
x\in \emptyset
Þar sem kvaðratrót neikvæðar tölu er ekki skilgreind í reit rauntölu eru engar lausnir.
x=-4
Birta allar fundnar lausnir.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}