Leystu fyrir x (complex solution)
x=\frac{-3+\sqrt{31}i}{4}\approx -0.75+1.391941091i
x=\frac{-\sqrt{31}i-3}{4}\approx -0.75-1.391941091i
Graf
Spurningakeppni
Quadratic Equation
5 vandamál svipuð og:
2 { x }^{ 2 } +3x=-5
Deila
Afritað á klemmuspjald
2x^{2}+3x=-5
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
2x^{2}+3x-\left(-5\right)=-5-\left(-5\right)
Leggðu 5 saman við báðar hliðar jöfnunar.
2x^{2}+3x-\left(-5\right)=0
Ef -5 er dregið frá sjálfu sér verður 0 eftir.
2x^{2}+3x+5=0
Dragðu -5 frá 0.
x=\frac{-3±\sqrt{3^{2}-4\times 2\times 5}}{2\times 2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 2 inn fyrir a, 3 inn fyrir b og 5 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\times 5}}{2\times 2}
Hefðu 3 í annað veldi.
x=\frac{-3±\sqrt{9-8\times 5}}{2\times 2}
Margfaldaðu -4 sinnum 2.
x=\frac{-3±\sqrt{9-40}}{2\times 2}
Margfaldaðu -8 sinnum 5.
x=\frac{-3±\sqrt{-31}}{2\times 2}
Leggðu 9 saman við -40.
x=\frac{-3±\sqrt{31}i}{2\times 2}
Finndu kvaðratrót -31.
x=\frac{-3±\sqrt{31}i}{4}
Margfaldaðu 2 sinnum 2.
x=\frac{-3+\sqrt{31}i}{4}
Leystu nú jöfnuna x=\frac{-3±\sqrt{31}i}{4} þegar ± er plús. Leggðu -3 saman við i\sqrt{31}.
x=\frac{-\sqrt{31}i-3}{4}
Leystu nú jöfnuna x=\frac{-3±\sqrt{31}i}{4} þegar ± er mínus. Dragðu i\sqrt{31} frá -3.
x=\frac{-3+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i-3}{4}
Leyst var úr jöfnunni.
2x^{2}+3x=-5
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
\frac{2x^{2}+3x}{2}=-\frac{5}{2}
Deildu báðum hliðum með 2.
x^{2}+\frac{3}{2}x=-\frac{5}{2}
Að deila með 2 afturkallar margföldun með 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Deildu \frac{3}{2}, stuðli x-liðarins, með 2 til að fá \frac{3}{4}. Leggðu síðan tvíveldi \frac{3}{4} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{5}{2}+\frac{9}{16}
Hefðu \frac{3}{4} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{31}{16}
Leggðu -\frac{5}{2} saman við \frac{9}{16} með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
\left(x+\frac{3}{4}\right)^{2}=-\frac{31}{16}
Stuðull x^{2}+\frac{3}{2}x+\frac{9}{16}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
Finndu kvaðratrót beggja hliða jöfnunar.
x+\frac{3}{4}=\frac{\sqrt{31}i}{4} x+\frac{3}{4}=-\frac{\sqrt{31}i}{4}
Einfaldaðu.
x=\frac{-3+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i-3}{4}
Dragðu \frac{3}{4} frá báðum hliðum jöfnunar.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}