Leystu fyrir Θ (complex solution)
\Theta =\frac{n^{-\frac{3}{2}}\left(\log_{n}\left(10\right)+17n+12\sqrt{n}\right)}{17}
n\neq 0\text{ and }n\neq 1
Leystu fyrir Θ
\Theta =\frac{\log_{n}\left(10\right)+17n+12\sqrt{n}}{17n^{\frac{3}{2}}}
n>0\text{ and }n\neq 1
Spurningakeppni
Algebra
5 vandamál svipuð og:
17 n \sqrt { n } + 12 n + \frac { \sqrt { n } } { \log n } = \Theta ( 17 n ^ { 2 } )
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}