Meta
-24
Stuðull
-24
Deila
Afritað á klemmuspjald
144\left(\frac{3}{12}-\frac{5}{12}\right)
Sjaldgæfasta margfeldi 4 og 12 er 12. Breyttu \frac{1}{4} og \frac{5}{12} í brot með nefnaranum 12.
144\times \frac{3-5}{12}
Þar sem \frac{3}{12} og \frac{5}{12} eru með sama nefnara skaltu draga frá með því að nota frádrátt á teljarana.
144\times \frac{-2}{12}
Dragðu 5 frá 3 til að fá út -2.
144\left(-\frac{1}{6}\right)
Minnka brotið \frac{-2}{12} eins mikið og hægt er með því að draga og stytta út 2.
\frac{144\left(-1\right)}{6}
Sýndu 144\left(-\frac{1}{6}\right) sem eitt brot.
\frac{-144}{6}
Margfaldaðu 144 og -1 til að fá út -144.
-24
Deildu -144 með 6 til að fá -24.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}