Beint í aðalefni
Leystu fyrir x
Tick mark Image
Leystu fyrir x (complex solution)
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

\frac{14.4}{4000}=1.025^{x}
Deildu báðum hliðum með 4000.
\frac{144}{40000}=1.025^{x}
Leystu upp \frac{14.4}{4000} með því að margfalda bæði teljara og nefnara með 10.
\frac{9}{2500}=1.025^{x}
Minnka brotið \frac{144}{40000} eins mikið og hægt er með því að draga og stytta út 16.
1.025^{x}=\frac{9}{2500}
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
\log(1.025^{x})=\log(\frac{9}{2500})
Taka logra beggja hliða jöfnunnar.
x\log(1.025)=\log(\frac{9}{2500})
Logri tölu hækkaður í veldi er veldi sinnum logra tölunnar.
x=\frac{\log(\frac{9}{2500})}{\log(1.025)}
Deildu báðum hliðum með \log(1.025).
x=\log_{1.025}\left(\frac{9}{2500}\right)
Af „change-of-base“ formúlunni\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).