Beint í aðalefni
Leystu fyrir p
Tick mark Image

Svipuð vandamál úr vefleit

Deila

10000+100+8=3p^{2}-190+11
Reiknaðu 100 í 2. veldi og fáðu 10000.
10100+8=3p^{2}-190+11
Leggðu saman 10000 og 100 til að fá 10100.
10108=3p^{2}-190+11
Leggðu saman 10100 og 8 til að fá 10108.
10108=3p^{2}-179
Leggðu saman -190 og 11 til að fá -179.
3p^{2}-179=10108
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
3p^{2}=10108+179
Bættu 179 við báðar hliðar.
3p^{2}=10287
Leggðu saman 10108 og 179 til að fá 10287.
p^{2}=\frac{10287}{3}
Deildu báðum hliðum með 3.
p^{2}=3429
Deildu 10287 með 3 til að fá 3429.
p=3\sqrt{381} p=-3\sqrt{381}
Finndu kvaðratrót beggja hliða jöfnunar.
10000+100+8=3p^{2}-190+11
Reiknaðu 100 í 2. veldi og fáðu 10000.
10100+8=3p^{2}-190+11
Leggðu saman 10000 og 100 til að fá 10100.
10108=3p^{2}-190+11
Leggðu saman 10100 og 8 til að fá 10108.
10108=3p^{2}-179
Leggðu saman -190 og 11 til að fá -179.
3p^{2}-179=10108
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
3p^{2}-179-10108=0
Dragðu 10108 frá báðum hliðum.
3p^{2}-10287=0
Dragðu 10108 frá -179 til að fá út -10287.
p=\frac{0±\sqrt{0^{2}-4\times 3\left(-10287\right)}}{2\times 3}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 3 inn fyrir a, 0 inn fyrir b og -10287 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 3\left(-10287\right)}}{2\times 3}
Hefðu 0 í annað veldi.
p=\frac{0±\sqrt{-12\left(-10287\right)}}{2\times 3}
Margfaldaðu -4 sinnum 3.
p=\frac{0±\sqrt{123444}}{2\times 3}
Margfaldaðu -12 sinnum -10287.
p=\frac{0±18\sqrt{381}}{2\times 3}
Finndu kvaðratrót 123444.
p=\frac{0±18\sqrt{381}}{6}
Margfaldaðu 2 sinnum 3.
p=3\sqrt{381}
Leystu nú jöfnuna p=\frac{0±18\sqrt{381}}{6} þegar ± er plús.
p=-3\sqrt{381}
Leystu nú jöfnuna p=\frac{0±18\sqrt{381}}{6} þegar ± er mínus.
p=3\sqrt{381} p=-3\sqrt{381}
Leyst var úr jöfnunni.