Beint í aðalefni
Stuðull
Tick mark Image
Meta
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

a+b=-1 ab=-9\times 10=-90
Þáttaðu segðina með því að flokka. Fyrst þarf að endurskrifa segðina sem -9x^{2}+ax+bx+10. Settu upp kerfi til að leysa til þess að finna a og b.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
Fyrst ab er mínus hafa a og b gagnstæð merki. Fyrst a+b er mínus hefur neikvæða talan hærra algildi en sú jákvæða. Skráðu inn öll slík pör sem gefa margfeldið -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Reiknaðu summuna fyrir hvert par.
a=9 b=-10
Lausnin er parið sem gefur summuna -1.
\left(-9x^{2}+9x\right)+\left(-10x+10\right)
Endurskrifa -9x^{2}-x+10 sem \left(-9x^{2}+9x\right)+\left(-10x+10\right).
9x\left(-x+1\right)+10\left(-x+1\right)
Taktu 9x út fyrir sviga í fyrsta hópi og 10 í öðrum hópi.
\left(-x+1\right)\left(9x+10\right)
Taktu sameiginlega liðinn -x+1 út fyrir sviga með því að nota dreifieiginleika.
-9x^{2}-x+10=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-9\right)\times 10}}{2\left(-9\right)}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-1\right)±\sqrt{1+36\times 10}}{2\left(-9\right)}
Margfaldaðu -4 sinnum -9.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2\left(-9\right)}
Margfaldaðu 36 sinnum 10.
x=\frac{-\left(-1\right)±\sqrt{361}}{2\left(-9\right)}
Leggðu 1 saman við 360.
x=\frac{-\left(-1\right)±19}{2\left(-9\right)}
Finndu kvaðratrót 361.
x=\frac{1±19}{2\left(-9\right)}
Gagnstæð tala tölunnar -1 er 1.
x=\frac{1±19}{-18}
Margfaldaðu 2 sinnum -9.
x=\frac{20}{-18}
Leystu nú jöfnuna x=\frac{1±19}{-18} þegar ± er plús. Leggðu 1 saman við 19.
x=-\frac{10}{9}
Minnka brotið \frac{20}{-18} eins mikið og hægt er með því að draga og stytta út 2.
x=-\frac{18}{-18}
Leystu nú jöfnuna x=\frac{1±19}{-18} þegar ± er mínus. Dragðu 19 frá 1.
x=1
Deildu -18 með -18.
-9x^{2}-x+10=-9\left(x-\left(-\frac{10}{9}\right)\right)\left(x-1\right)
Þættu upprunalegu segðina með ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Skiptu -\frac{10}{9} út fyrir x_{1} og 1 út fyrir x_{2}.
-9x^{2}-x+10=-9\left(x+\frac{10}{9}\right)\left(x-1\right)
Einfaldaðu allar segðir formsins p-\left(-q\right) í p+q.
-9x^{2}-x+10=-9\times \frac{-9x-10}{-9}\left(x-1\right)
Leggðu \frac{10}{9} saman við x með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
-9x^{2}-x+10=\left(-9x-10\right)\left(x-1\right)
Styttu út stærsta sameiginlega þáttinn 9 í -9 og 9.