Beint í aðalefni
Leystu fyrir x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

x^{2}-x-2=4
Notaðu dreifieiginleika til að margfalda x+1 með x-2 og sameina svipuð hugtök.
x^{2}-x-2-4=0
Dragðu 4 frá báðum hliðum.
x^{2}-x-6=0
Dragðu 4 frá -2 til að fá út -6.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, -1 inn fyrir b og -6 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Margfaldaðu -4 sinnum -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Leggðu 1 saman við 24.
x=\frac{-\left(-1\right)±5}{2}
Finndu kvaðratrót 25.
x=\frac{1±5}{2}
Gagnstæð tala tölunnar -1 er 1.
x=\frac{6}{2}
Leystu nú jöfnuna x=\frac{1±5}{2} þegar ± er plús. Leggðu 1 saman við 5.
x=3
Deildu 6 með 2.
x=-\frac{4}{2}
Leystu nú jöfnuna x=\frac{1±5}{2} þegar ± er mínus. Dragðu 5 frá 1.
x=-2
Deildu -4 með 2.
x=3 x=-2
Leyst var úr jöfnunni.
x^{2}-x-2=4
Notaðu dreifieiginleika til að margfalda x+1 með x-2 og sameina svipuð hugtök.
x^{2}-x=4+2
Bættu 2 við báðar hliðar.
x^{2}-x=6
Leggðu saman 4 og 2 til að fá 6.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Deildu -1, stuðli x-liðarins, með 2 til að fá -\frac{1}{2}. Leggðu síðan tvíveldi -\frac{1}{2} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Hefðu -\frac{1}{2} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Leggðu 6 saman við \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Stuðull x^{2}-x+\frac{1}{4}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Finndu kvaðratrót beggja hliða jöfnunar.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Einfaldaðu.
x=3 x=-2
Leggðu \frac{1}{2} saman við báðar hliðar jöfnunar.