Leystu fyrir m
m=-\frac{x\left(x+2\right)}{x+3}
x\neq -3
Leystu fyrir x (complex solution)
x=\frac{\sqrt{m^{2}-8m+4}}{2}-\frac{m}{2}-1
x=-\frac{\sqrt{m^{2}-8m+4}}{2}-\frac{m}{2}-1
Leystu fyrir x
x=\frac{\sqrt{m^{2}-8m+4}}{2}-\frac{m}{2}-1
x=-\frac{\sqrt{m^{2}-8m+4}}{2}-\frac{m}{2}-1\text{, }m\geq 2\sqrt{3}+4\text{ or }m\leq 4-2\sqrt{3}
Graf
Spurningakeppni
Algebra
5 vandamál svipuð og:
( x + 3 ) ( x + m ) = x
Deila
Afritað á klemmuspjald
x^{2}+xm+3x+3m=x
Notaðu dreifieiginleika til að margfalda x+3 með x+m.
xm+3x+3m=x-x^{2}
Dragðu x^{2} frá báðum hliðum.
xm+3m=x-x^{2}-3x
Dragðu 3x frá báðum hliðum.
xm+3m=-2x-x^{2}
Sameinaðu x og -3x til að fá -2x.
\left(x+3\right)m=-2x-x^{2}
Sameinaðu alla liði sem innihalda m.
\left(x+3\right)m=-x^{2}-2x
Jafnan er í staðalformi.
\frac{\left(x+3\right)m}{x+3}=-\frac{x\left(x+2\right)}{x+3}
Deildu báðum hliðum með x+3.
m=-\frac{x\left(x+2\right)}{x+3}
Að deila með x+3 afturkallar margföldun með x+3.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}