Leystu fyrir k (complex solution)
k=\frac{\sqrt{x^{4}+8x^{2}+12x+36}-x^{2}}{2}
k=\frac{-\sqrt{x^{4}+8x^{2}+12x+36}-x^{2}}{2}
Leystu fyrir x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{-4k^{3}+8k^{2}+36k-63}+3}{2\left(k-2\right)}\text{; }x=\frac{-\sqrt{-4k^{3}+8k^{2}+36k-63}+3}{2\left(k-2\right)}\text{, }&k\neq 2\\x=-\frac{5}{3}\text{, }&k=2\end{matrix}\right.
Leystu fyrir k
k=\frac{\sqrt{x^{4}+8x^{2}+12x+36}-x^{2}}{2}
k=\frac{-\sqrt{x^{4}+8x^{2}+12x+36}-x^{2}}{2}\text{, }x^{4}+8x^{2}+12x+36\geq 0
Leystu fyrir x
\left\{\begin{matrix}x=\frac{\sqrt{-4k^{3}+8k^{2}+36k-63}+3}{2\left(k-2\right)}\text{; }x=\frac{-\sqrt{-4k^{3}+8k^{2}+36k-63}+3}{2\left(k-2\right)}\text{, }&k\neq 2\text{ and }-4k^{3}+8k^{2}+36k-63\geq 0\\x=-\frac{5}{3}\text{, }&k=2\end{matrix}\right.
Graf
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}