Meta
-16\left(ab\right)^{2}
Víkka
-16\left(ab\right)^{2}
Spurningakeppni
Algebra
5 vandamál svipuð og:
( a - 2 b ) ^ { 2 } ( a + 2 b ) ^ { 2 } - ( a ^ { 2 } + 4 b ^ { 2 } ) ^ { 2 }
Deila
Afritað á klemmuspjald
\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
Notaðu tvíliðusetninguna \left(p-q\right)^{2}=p^{2}-2pq+q^{2} til að stækka \left(a-2b\right)^{2}.
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
Notaðu tvíliðusetninguna \left(p+q\right)^{2}=p^{2}+2pq+q^{2} til að stækka \left(a+2b\right)^{2}.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
Notaðu dreifieiginleika til að margfalda a^{2}-4ab+4b^{2} með a^{2}+4ab+4b^{2} og sameina svipuð hugtök.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Notaðu tvíliðusetninguna \left(p+q\right)^{2}=p^{2}+2pq+q^{2} til að stækka \left(a^{2}+4b^{2}\right)^{2}.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Margfaldaðu veldisvísa til að hefja veldi í annað veldi. Margfaldaðu 2 og 2 til að fá út 4.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
Margfaldaðu veldisvísa til að hefja veldi í annað veldi. Margfaldaðu 2 og 2 til að fá út 4.
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
Til að finna andstæðu a^{4}+8a^{2}b^{2}+16b^{4} skaltu finna andstæðu hvers liðs.
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
Sameinaðu a^{4} og -a^{4} til að fá 0.
-16a^{2}b^{2}+16b^{4}-16b^{4}
Sameinaðu -8a^{2}b^{2} og -8a^{2}b^{2} til að fá -16a^{2}b^{2}.
-16a^{2}b^{2}
Sameinaðu 16b^{4} og -16b^{4} til að fá 0.
\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
Notaðu tvíliðusetninguna \left(p-q\right)^{2}=p^{2}-2pq+q^{2} til að stækka \left(a-2b\right)^{2}.
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
Notaðu tvíliðusetninguna \left(p+q\right)^{2}=p^{2}+2pq+q^{2} til að stækka \left(a+2b\right)^{2}.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
Notaðu dreifieiginleika til að margfalda a^{2}-4ab+4b^{2} með a^{2}+4ab+4b^{2} og sameina svipuð hugtök.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Notaðu tvíliðusetninguna \left(p+q\right)^{2}=p^{2}+2pq+q^{2} til að stækka \left(a^{2}+4b^{2}\right)^{2}.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Margfaldaðu veldisvísa til að hefja veldi í annað veldi. Margfaldaðu 2 og 2 til að fá út 4.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
Margfaldaðu veldisvísa til að hefja veldi í annað veldi. Margfaldaðu 2 og 2 til að fá út 4.
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
Til að finna andstæðu a^{4}+8a^{2}b^{2}+16b^{4} skaltu finna andstæðu hvers liðs.
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
Sameinaðu a^{4} og -a^{4} til að fá 0.
-16a^{2}b^{2}+16b^{4}-16b^{4}
Sameinaðu -8a^{2}b^{2} og -8a^{2}b^{2} til að fá -16a^{2}b^{2}.
-16a^{2}b^{2}
Sameinaðu 16b^{4} og -16b^{4} til að fá 0.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}