Leystu fyrir x
x=0
Graf
Deila
Afritað á klemmuspjald
25x^{2}-20x+4=5x^{2}-20x+4
Notaðu tvíliðusetninguna \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til að stækka \left(5x-2\right)^{2}.
25x^{2}-20x+4-5x^{2}=-20x+4
Dragðu 5x^{2} frá báðum hliðum.
20x^{2}-20x+4=-20x+4
Sameinaðu 25x^{2} og -5x^{2} til að fá 20x^{2}.
20x^{2}-20x+4+20x=4
Bættu 20x við báðar hliðar.
20x^{2}+4=4
Sameinaðu -20x og 20x til að fá 0.
20x^{2}=4-4
Dragðu 4 frá báðum hliðum.
20x^{2}=0
Dragðu 4 frá 4 til að fá út 0.
x^{2}=0
Deildu báðum hliðum með 20. Núll deilt með öðrum tölum skilar núlli.
x=0 x=0
Finndu kvaðratrót beggja hliða jöfnunar.
x=0
Leyst var úr jöfnunni. Lausnirnar eru eins.
25x^{2}-20x+4=5x^{2}-20x+4
Notaðu tvíliðusetninguna \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til að stækka \left(5x-2\right)^{2}.
25x^{2}-20x+4-5x^{2}=-20x+4
Dragðu 5x^{2} frá báðum hliðum.
20x^{2}-20x+4=-20x+4
Sameinaðu 25x^{2} og -5x^{2} til að fá 20x^{2}.
20x^{2}-20x+4+20x=4
Bættu 20x við báðar hliðar.
20x^{2}+4=4
Sameinaðu -20x og 20x til að fá 0.
20x^{2}+4-4=0
Dragðu 4 frá báðum hliðum.
20x^{2}=0
Dragðu 4 frá 4 til að fá út 0.
x^{2}=0
Deildu báðum hliðum með 20. Núll deilt með öðrum tölum skilar núlli.
x=\frac{0±\sqrt{0^{2}}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, 0 inn fyrir b og 0 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2}
Finndu kvaðratrót 0^{2}.
x=0
Deildu 0 með 2.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}