Meta
\frac{rt}{3}
Víkka
\frac{rt}{3}
Deila
Afritað á klemmuspjald
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r+\frac{1}{4}s\right)^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Hefðu \frac{1}{4}r-s+\frac{2}{3}t í annað veldi.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}\right)-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Notaðu tvíliðusetninguna \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til að stækka \left(r+\frac{1}{4}s\right)^{2}.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-r^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Til að finna andstæðu r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2} skaltu finna andstæðu hvers liðs.
-\frac{15}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu \frac{1}{16}r^{2} og -r^{2} til að fá -\frac{15}{16}r^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu -\frac{1}{2}rs og -\frac{1}{2}rs til að fá -rs.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu s^{2} og -\frac{1}{16}s^{2} til að fá \frac{15}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}\right)+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Notaðu tvíliðusetninguna \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til að stækka \left(s-\frac{2}{3}t\right)^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-s^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Til að finna andstæðu s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2} skaltu finna andstæðu hvers liðs.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu \frac{15}{16}s^{2} og -s^{2} til að fá -\frac{1}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{4}{9}t^{2}-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu -\frac{4}{3}st og \frac{4}{3}st til að fá 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu \frac{4}{9}t^{2} og -\frac{4}{9}t^{2} til að fá 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\left(\frac{1}{16}r+\frac{1}{16}s\right)\left(15r+s\right)
Notaðu dreifieiginleika til að margfalda \frac{1}{16} með r+s.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{15}{16}r^{2}+rs+\frac{1}{16}s^{2}
Notaðu dreifieiginleika til að margfalda \frac{1}{16}r+\frac{1}{16}s með 15r+s og sameina svipuð hugtök.
-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+rs+\frac{1}{16}s^{2}
Sameinaðu -\frac{15}{16}r^{2} og \frac{15}{16}r^{2} til að fá 0.
\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}s^{2}
Sameinaðu -rs og rs til að fá 0.
\frac{1}{3}rt
Sameinaðu -\frac{1}{16}s^{2} og \frac{1}{16}s^{2} til að fá 0.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r+\frac{1}{4}s\right)^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Hefðu \frac{1}{4}r-s+\frac{2}{3}t í annað veldi.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}\right)-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Notaðu tvíliðusetninguna \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til að stækka \left(r+\frac{1}{4}s\right)^{2}.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-r^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Til að finna andstæðu r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2} skaltu finna andstæðu hvers liðs.
-\frac{15}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu \frac{1}{16}r^{2} og -r^{2} til að fá -\frac{15}{16}r^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu -\frac{1}{2}rs og -\frac{1}{2}rs til að fá -rs.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu s^{2} og -\frac{1}{16}s^{2} til að fá \frac{15}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}\right)+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Notaðu tvíliðusetninguna \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til að stækka \left(s-\frac{2}{3}t\right)^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-s^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Til að finna andstæðu s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2} skaltu finna andstæðu hvers liðs.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu \frac{15}{16}s^{2} og -s^{2} til að fá -\frac{1}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{4}{9}t^{2}-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu -\frac{4}{3}st og \frac{4}{3}st til að fá 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Sameinaðu \frac{4}{9}t^{2} og -\frac{4}{9}t^{2} til að fá 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\left(\frac{1}{16}r+\frac{1}{16}s\right)\left(15r+s\right)
Notaðu dreifieiginleika til að margfalda \frac{1}{16} með r+s.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{15}{16}r^{2}+rs+\frac{1}{16}s^{2}
Notaðu dreifieiginleika til að margfalda \frac{1}{16}r+\frac{1}{16}s með 15r+s og sameina svipuð hugtök.
-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+rs+\frac{1}{16}s^{2}
Sameinaðu -\frac{15}{16}r^{2} og \frac{15}{16}r^{2} til að fá 0.
\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}s^{2}
Sameinaðu -rs og rs til að fá 0.
\frac{1}{3}rt
Sameinaðu -\frac{1}{16}s^{2} og \frac{1}{16}s^{2} til að fá 0.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}