Leystu fyrir x
x=-\frac{1}{2}=-0.5
Graf
Deila
Afritað á klemmuspjald
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Notaðu tvíliðusetninguna \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} til að stækka \left(\frac{1}{3}x-\frac{1}{2}\right)^{3}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}x\right)^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Íhugaðu \left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right). Hægt er að breyta margföldun í mismun annarra velda með reglunni: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Hefðu \frac{1}{2} í annað veldi.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}\right)^{2}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Víkka \left(\frac{1}{3}x\right)^{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{9}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Reiknaðu \frac{1}{3} í 2. veldi og fáðu \frac{1}{9}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\frac{1}{9}x^{2}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Til að finna andstæðu \frac{1}{9}x^{2}-\frac{1}{4} skaltu finna andstæðu hvers liðs.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x-\frac{1}{8}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Sameinaðu -\frac{1}{6}x^{2} og -\frac{1}{9}x^{2} til að fá -\frac{5}{18}x^{2}.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Leggðu saman -\frac{1}{8} og \frac{1}{4} til að fá \frac{1}{8}.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{27}x^{3}+\frac{5}{18}x^{2}=0
Notaðu dreifieiginleika til að margfalda -\frac{1}{9}x^{2} með \frac{1}{3}x-\frac{5}{2}.
-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}+\frac{5}{18}x^{2}=0
Sameinaðu \frac{1}{27}x^{3} og -\frac{1}{27}x^{3} til að fá 0.
\frac{1}{4}x+\frac{1}{8}=0
Sameinaðu -\frac{5}{18}x^{2} og \frac{5}{18}x^{2} til að fá 0.
\frac{1}{4}x=-\frac{1}{8}
Dragðu \frac{1}{8} frá báðum hliðum. Allt sem dregið er frá núlli skilar sjálfu sér sem mínustölu.
x=-\frac{1}{8}\times 4
Margfaldaðu báðar hliðar með 4, umhverfu \frac{1}{4}.
x=-\frac{1}{2}
Margfaldaðu -\frac{1}{8} og 4 til að fá út -\frac{1}{2}.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}