Beint í aðalefni
Leystu fyrir x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

a+b=-6 ab=8
Leystu jöfnuna með því að þátta x^{2}-6x+8 með formúlunni x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Settu upp kerfi til að leysa til þess að finna a og b.
-1,-8 -2,-4
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er mínus eru a og b bæði mínus. Skráðu inn öll slík pör sem gefa margfeldið 8.
-1-8=-9 -2-4=-6
Reiknaðu summuna fyrir hvert par.
a=-4 b=-2
Lausnin er parið sem gefur summuna -6.
\left(x-4\right)\left(x-2\right)
Endurskrifaðu þáttuðu segðina \left(x+a\right)\left(x+b\right) með því að nota fengin gildi.
x=4 x=2
Leystu x-4=0 og x-2=0 til að finna lausnir jöfnunnar.
a+b=-6 ab=1\times 8=8
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem x^{2}+ax+bx+8. Settu upp kerfi til að leysa til þess að finna a og b.
-1,-8 -2,-4
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er mínus eru a og b bæði mínus. Skráðu inn öll slík pör sem gefa margfeldið 8.
-1-8=-9 -2-4=-6
Reiknaðu summuna fyrir hvert par.
a=-4 b=-2
Lausnin er parið sem gefur summuna -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Endurskrifa x^{2}-6x+8 sem \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Taktu x út fyrir sviga í fyrsta hópi og -2 í öðrum hópi.
\left(x-4\right)\left(x-2\right)
Taktu sameiginlega liðinn x-4 út fyrir sviga með því að nota dreifieiginleika.
x=4 x=2
Leystu x-4=0 og x-2=0 til að finna lausnir jöfnunnar.
x^{2}-6x+8=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, -6 inn fyrir b og 8 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
Hefðu -6 í annað veldi.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
Margfaldaðu -4 sinnum 8.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
Leggðu 36 saman við -32.
x=\frac{-\left(-6\right)±2}{2}
Finndu kvaðratrót 4.
x=\frac{6±2}{2}
Gagnstæð tala tölunnar -6 er 6.
x=\frac{8}{2}
Leystu nú jöfnuna x=\frac{6±2}{2} þegar ± er plús. Leggðu 6 saman við 2.
x=4
Deildu 8 með 2.
x=\frac{4}{2}
Leystu nú jöfnuna x=\frac{6±2}{2} þegar ± er mínus. Dragðu 2 frá 6.
x=2
Deildu 4 með 2.
x=4 x=2
Leyst var úr jöfnunni.
x^{2}-6x+8=0
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
x^{2}-6x+8-8=-8
Dragðu 8 frá báðum hliðum jöfnunar.
x^{2}-6x=-8
Ef 8 er dregið frá sjálfu sér verður 0 eftir.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Deildu -6, stuðli x-liðarins, með 2 til að fá -3. Leggðu síðan tvíveldi -3 við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}-6x+9=-8+9
Hefðu -3 í annað veldi.
x^{2}-6x+9=1
Leggðu -8 saman við 9.
\left(x-3\right)^{2}=1
Stuðull x^{2}-6x+9. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
Finndu kvaðratrót beggja hliða jöfnunar.
x-3=1 x-3=-1
Einfaldaðu.
x=4 x=2
Leggðu 3 saman við báðar hliðar jöfnunar.