Beint í aðalefni
Stuðull
Tick mark Image
Meta
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

a+b=-2 ab=1\left(-3\right)=-3
Þáttaðu segðina með því að flokka. Fyrst þarf að endurskrifa segðina sem x^{2}+ax+bx-3. Settu upp kerfi til að leysa til þess að finna a og b.
a=-3 b=1
Fyrst ab er mínus hafa a og b gagnstæð merki. Fyrst a+b er mínus hefur neikvæða talan hærra algildi en sú jákvæða. Eina slíka parið er kerfislausnin.
\left(x^{2}-3x\right)+\left(x-3\right)
Endurskrifa x^{2}-2x-3 sem \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Taktux út fyrir sviga í x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Taktu sameiginlega liðinn x-3 út fyrir sviga með því að nota dreifieiginleika.
x^{2}-2x-3=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Hefðu -2 í annað veldi.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Margfaldaðu -4 sinnum -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Leggðu 4 saman við 12.
x=\frac{-\left(-2\right)±4}{2}
Finndu kvaðratrót 16.
x=\frac{2±4}{2}
Gagnstæð tala tölunnar -2 er 2.
x=\frac{6}{2}
Leystu nú jöfnuna x=\frac{2±4}{2} þegar ± er plús. Leggðu 2 saman við 4.
x=3
Deildu 6 með 2.
x=-\frac{2}{2}
Leystu nú jöfnuna x=\frac{2±4}{2} þegar ± er mínus. Dragðu 4 frá 2.
x=-1
Deildu -2 með 2.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
Þættu upprunalegu segðina með ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Skiptu 3 út fyrir x_{1} og -1 út fyrir x_{2}.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
Einfaldaðu allar segðir formsins p-\left(-q\right) í p+q.