Leystu fyrir x
x=-4
x=9
Graf
Spurningakeppni
Quadratic Equation
{ x }^{ 2 } =5x+36
Deila
Afritað á klemmuspjald
x^{2}-5x=36
Dragðu 5x frá báðum hliðum.
x^{2}-5x-36=0
Dragðu 36 frá báðum hliðum.
a+b=-5 ab=-36
Leystu jöfnuna með því að þátta x^{2}-5x-36 með formúlunni x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Settu upp kerfi til að leysa til þess að finna a og b.
1,-36 2,-18 3,-12 4,-9 6,-6
Fyrst ab er mínus hafa a og b gagnstæð merki. Fyrst a+b er mínus hefur neikvæða talan hærra algildi en sú jákvæða. Skráðu inn öll slík pör sem gefa margfeldið -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Reiknaðu summuna fyrir hvert par.
a=-9 b=4
Lausnin er parið sem gefur summuna -5.
\left(x-9\right)\left(x+4\right)
Endurskrifaðu þáttuðu segðina \left(x+a\right)\left(x+b\right) með því að nota fengin gildi.
x=9 x=-4
Leystu x-9=0 og x+4=0 til að finna lausnir jöfnunnar.
x^{2}-5x=36
Dragðu 5x frá báðum hliðum.
x^{2}-5x-36=0
Dragðu 36 frá báðum hliðum.
a+b=-5 ab=1\left(-36\right)=-36
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem x^{2}+ax+bx-36. Settu upp kerfi til að leysa til þess að finna a og b.
1,-36 2,-18 3,-12 4,-9 6,-6
Fyrst ab er mínus hafa a og b gagnstæð merki. Fyrst a+b er mínus hefur neikvæða talan hærra algildi en sú jákvæða. Skráðu inn öll slík pör sem gefa margfeldið -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Reiknaðu summuna fyrir hvert par.
a=-9 b=4
Lausnin er parið sem gefur summuna -5.
\left(x^{2}-9x\right)+\left(4x-36\right)
Endurskrifa x^{2}-5x-36 sem \left(x^{2}-9x\right)+\left(4x-36\right).
x\left(x-9\right)+4\left(x-9\right)
Taktu x út fyrir sviga í fyrsta hópi og 4 í öðrum hópi.
\left(x-9\right)\left(x+4\right)
Taktu sameiginlega liðinn x-9 út fyrir sviga með því að nota dreifieiginleika.
x=9 x=-4
Leystu x-9=0 og x+4=0 til að finna lausnir jöfnunnar.
x^{2}-5x=36
Dragðu 5x frá báðum hliðum.
x^{2}-5x-36=0
Dragðu 36 frá báðum hliðum.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, -5 inn fyrir b og -36 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
Hefðu -5 í annað veldi.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
Margfaldaðu -4 sinnum -36.
x=\frac{-\left(-5\right)±\sqrt{169}}{2}
Leggðu 25 saman við 144.
x=\frac{-\left(-5\right)±13}{2}
Finndu kvaðratrót 169.
x=\frac{5±13}{2}
Gagnstæð tala tölunnar -5 er 5.
x=\frac{18}{2}
Leystu nú jöfnuna x=\frac{5±13}{2} þegar ± er plús. Leggðu 5 saman við 13.
x=9
Deildu 18 með 2.
x=-\frac{8}{2}
Leystu nú jöfnuna x=\frac{5±13}{2} þegar ± er mínus. Dragðu 13 frá 5.
x=-4
Deildu -8 með 2.
x=9 x=-4
Leyst var úr jöfnunni.
x^{2}-5x=36
Dragðu 5x frá báðum hliðum.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
Deildu -5, stuðli x-liðarins, með 2 til að fá -\frac{5}{2}. Leggðu síðan tvíveldi -\frac{5}{2} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}-5x+\frac{25}{4}=36+\frac{25}{4}
Hefðu -\frac{5}{2} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}-5x+\frac{25}{4}=\frac{169}{4}
Leggðu 36 saman við \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{169}{4}
Stuðull x^{2}-5x+\frac{25}{4}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Finndu kvaðratrót beggja hliða jöfnunar.
x-\frac{5}{2}=\frac{13}{2} x-\frac{5}{2}=-\frac{13}{2}
Einfaldaðu.
x=9 x=-4
Leggðu \frac{5}{2} saman við báðar hliðar jöfnunar.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}