Beint í aðalefni
Leystu fyrir x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

x^{2}+x+2=5
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x^{2}+x+2-5=5-5
Dragðu 5 frá báðum hliðum jöfnunar.
x^{2}+x+2-5=0
Ef 5 er dregið frá sjálfu sér verður 0 eftir.
x^{2}+x-3=0
Dragðu 5 frá 2.
x=\frac{-1±\sqrt{1^{2}-4\left(-3\right)}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, 1 inn fyrir b og -3 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-3\right)}}{2}
Hefðu 1 í annað veldi.
x=\frac{-1±\sqrt{1+12}}{2}
Margfaldaðu -4 sinnum -3.
x=\frac{-1±\sqrt{13}}{2}
Leggðu 1 saman við 12.
x=\frac{\sqrt{13}-1}{2}
Leystu nú jöfnuna x=\frac{-1±\sqrt{13}}{2} þegar ± er plús. Leggðu -1 saman við \sqrt{13}.
x=\frac{-\sqrt{13}-1}{2}
Leystu nú jöfnuna x=\frac{-1±\sqrt{13}}{2} þegar ± er mínus. Dragðu \sqrt{13} frá -1.
x=\frac{\sqrt{13}-1}{2} x=\frac{-\sqrt{13}-1}{2}
Leyst var úr jöfnunni.
x^{2}+x+2=5
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
x^{2}+x+2-2=5-2
Dragðu 2 frá báðum hliðum jöfnunar.
x^{2}+x=5-2
Ef 2 er dregið frá sjálfu sér verður 0 eftir.
x^{2}+x=3
Dragðu 2 frá 5.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=3+\left(\frac{1}{2}\right)^{2}
Deildu 1, stuðli x-liðarins, með 2 til að fá \frac{1}{2}. Leggðu síðan tvíveldi \frac{1}{2} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}+x+\frac{1}{4}=3+\frac{1}{4}
Hefðu \frac{1}{2} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}+x+\frac{1}{4}=\frac{13}{4}
Leggðu 3 saman við \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{13}{4}
Stuðull x^{2}+x+\frac{1}{4}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Finndu kvaðratrót beggja hliða jöfnunar.
x+\frac{1}{2}=\frac{\sqrt{13}}{2} x+\frac{1}{2}=-\frac{\sqrt{13}}{2}
Einfaldaðu.
x=\frac{\sqrt{13}-1}{2} x=\frac{-\sqrt{13}-1}{2}
Dragðu \frac{1}{2} frá báðum hliðum jöfnunar.