Meta
5\sqrt{3}-\sqrt{2}\approx 7.246040475
Spurningakeppni
Arithmetic
5 vandamál svipuð og:
\sqrt{ 12 } + \sqrt{ 18 } + \sqrt{ 27 } - \sqrt{ 32 }
Deila
Afritað á klemmuspjald
2\sqrt{3}+\sqrt{18}+\sqrt{27}-\sqrt{32}
Stuðull 12=2^{2}\times 3. Endurskrifaðu kvaðratrót margfeldis \sqrt{2^{2}\times 3} sem margfeldi kvaðratróta \sqrt{2^{2}}\sqrt{3}. Finndu kvaðratrót 2^{2}.
2\sqrt{3}+3\sqrt{2}+\sqrt{27}-\sqrt{32}
Stuðull 18=3^{2}\times 2. Endurskrifaðu kvaðratrót margfeldis \sqrt{3^{2}\times 2} sem margfeldi kvaðratróta \sqrt{3^{2}}\sqrt{2}. Finndu kvaðratrót 3^{2}.
2\sqrt{3}+3\sqrt{2}+3\sqrt{3}-\sqrt{32}
Stuðull 27=3^{2}\times 3. Endurskrifaðu kvaðratrót margfeldis \sqrt{3^{2}\times 3} sem margfeldi kvaðratróta \sqrt{3^{2}}\sqrt{3}. Finndu kvaðratrót 3^{2}.
5\sqrt{3}+3\sqrt{2}-\sqrt{32}
Sameinaðu 2\sqrt{3} og 3\sqrt{3} til að fá 5\sqrt{3}.
5\sqrt{3}+3\sqrt{2}-4\sqrt{2}
Stuðull 32=4^{2}\times 2. Endurskrifaðu kvaðratrót margfeldis \sqrt{4^{2}\times 2} sem margfeldi kvaðratróta \sqrt{4^{2}}\sqrt{2}. Finndu kvaðratrót 4^{2}.
5\sqrt{3}-\sqrt{2}
Sameinaðu 3\sqrt{2} og -4\sqrt{2} til að fá -\sqrt{2}.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}