Beint í aðalefni
Meta
Tick mark Image

Deila

\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\cos(30)\right)^{2}+\left(\tan(30)\right)^{2}
Fá gildið \sin(60) úr töflunni fyrir hornafræðileg gildi.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\cos(30)\right)^{2}+\left(\tan(30)\right)^{2}
Til að hækka \frac{\sqrt{3}}{2} um veldu skaltu hefja bæði teljarann og nefnarann í sama veldi og svo deila.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\tan(30)\right)^{2}
Fá gildið \cos(30) úr töflunni fyrir hornafræðileg gildi.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\tan(30)\right)^{2}
Til að hækka \frac{\sqrt{3}}{2} um veldu skaltu hefja bæði teljarann og nefnarann í sama veldi og svo deila.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{2^{2}}+\left(\tan(30)\right)^{2}
\sqrt{3} í öðru veldi er 3.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}+\left(\tan(30)\right)^{2}
Reiknaðu 2 í 2. veldi og fáðu 4.
\frac{\left(\sqrt{3}\right)^{2}}{4}-\frac{3}{4}+\left(\tan(30)\right)^{2}
Til að leggja saman eða draga saman segðir skaltu stækka þær til að nefnararnir verði eins. Víkka 2^{2}.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\left(\tan(30)\right)^{2}
Þar sem \frac{\left(\sqrt{3}\right)^{2}}{4} og \frac{3}{4} eru með sama nefnara skaltu draga frá með því að nota frádrátt á teljarana.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\left(\frac{\sqrt{3}}{3}\right)^{2}
Fá gildið \tan(30) úr töflunni fyrir hornafræðileg gildi.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Til að hækka \frac{\sqrt{3}}{3} um veldu skaltu hefja bæði teljarann og nefnarann í sama veldi og svo deila.
\frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)}{36}+\frac{4\left(\sqrt{3}\right)^{2}}{36}
Til að leggja saman eða draga saman segðir skaltu stækka þær til að nefnararnir verði eins. Minnsta sameiginlega margfeldi 4 og 3^{2} er 36. Margfaldaðu \frac{\left(\sqrt{3}\right)^{2}-3}{4} sinnum \frac{9}{9}. Margfaldaðu \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} sinnum \frac{4}{4}.
\frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)+4\left(\sqrt{3}\right)^{2}}{36}
Þar sem \frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)}{36} og \frac{4\left(\sqrt{3}\right)^{2}}{36} eru með sama nefnara skaltu leggja saman með því að leggja saman teljarana.
\frac{3-3}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
\sqrt{3} í öðru veldi er 3.
\frac{0}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Dragðu 3 frá 3 til að fá út 0.
0+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Núll deilt með öðrum tölum skilar núlli.
0+\frac{3}{3^{2}}
\sqrt{3} í öðru veldi er 3.
0+\frac{3}{9}
Reiknaðu 3 í 2. veldi og fáðu 9.
0+\frac{1}{3}
Minnka brotið \frac{3}{9} eins mikið og hægt er með því að draga og stytta út 3.
\frac{1}{3}
Leggðu saman 0 og \frac{1}{3} til að fá \frac{1}{3}.