Leystu fyrir x, y (complex solution)
x=\log(e)\left(\ln(2)+\pi i\right)\approx 0.301029996+1.364376354i
y=-\frac{\log(e)\left(-\pi i+\ln(500000)\right)}{2}\approx -2.849485002+0.682188177i
Graf
Spurningakeppni
Algebra
5 vandamál svipuð og:
\left. \begin{array}{l}{ x - 2 y = 6 }\\{ x = \log - 2 }\end{array} \right.
Deila
Afritað á klemmuspjald
x=\log_{10}\left(-2\right),x-2y=6
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
x=\log_{10}\left(-2\right)
Veldu eina af jöfnunum tveimur sem er einfaldara að leysa fyrir x með því að einangra x vinstra megin við samasemmerkið.
x=\log(e)\left(\ln(2)+\pi i\right)
Deildu báðum hliðum með 1.
\log(e)\left(\ln(2)+\pi i\right)-2y=6
Settu \left(\ln(2)+i\pi \right)\log(e) inn fyrir x í hinni jöfnunni, x-2y=6.
-2y=\log(e)\left(-\pi i+\ln(500000)\right)
Dragðu \left(\ln(2)+i\pi \right)\log(e) frá báðum hliðum jöfnunar.
y=-\frac{\log(e)\left(-\pi i+\ln(500000)\right)}{2}
Deildu báðum hliðum með -2.
x=\log(e)\left(\ln(2)+\pi i\right),y=-\frac{\log(e)\left(-\pi i+\ln(500000)\right)}{2}
Leyst var úr kerfinu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}