Leystu fyrir x, y
x=75
y=28
Graf
Spurningakeppni
Simultaneous Equation
5 vandamál svipuð og:
\left. \begin{array}{l}{ x + y = 103 }\\{ x - 2 y = 19 }\end{array} \right.
Deila
Afritað á klemmuspjald
x+y=103,x-2y=19
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
x+y=103
Veldu eina jöfnuna og leystu x með því að einangra x vinstra megin við samasemmerkið.
x=-y+103
Dragðu y frá báðum hliðum jöfnunar.
-y+103-2y=19
Settu -y+103 inn fyrir x í hinni jöfnunni, x-2y=19.
-3y+103=19
Leggðu -y saman við -2y.
-3y=-84
Dragðu 103 frá báðum hliðum jöfnunar.
y=28
Deildu báðum hliðum með -3.
x=-28+103
Skiptu 28 út fyrir y í x=-y+103. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x=75
Leggðu 103 saman við -28.
x=75,y=28
Leyst var úr kerfinu.
x+y=103,x-2y=19
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}103\\19\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}103\\19\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}1&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}103\\19\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}103\\19\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}103\\19\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}103\\19\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 103+\frac{1}{3}\times 19\\\frac{1}{3}\times 103-\frac{1}{3}\times 19\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}75\\28\end{matrix}\right)
Reiknaðu.
x=75,y=28
Dragðu út stuðul fylkjanna x og y.
x+y=103,x-2y=19
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
x-x+y+2y=103-19
Dragðu x-2y=19 frá x+y=103 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
y+2y=103-19
Leggðu x saman við -x. Liðirnir x og -x núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
3y=103-19
Leggðu y saman við 2y.
3y=84
Leggðu 103 saman við -19.
y=28
Deildu báðum hliðum með 3.
x-2\times 28=19
Skiptu 28 út fyrir y í x-2y=19. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x-56=19
Margfaldaðu -2 sinnum 28.
x=75
Leggðu 56 saman við báðar hliðar jöfnunar.
x=75,y=28
Leyst var úr kerfinu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}