Beint í aðalefni
Leystu fyrir y, x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

y+6x=2
Íhugaðu fyrstu jöfnuna. Bættu 6x við báðar hliðar.
y+x=-3
Íhugaðu aðra jöfnuna. Bættu x við báðar hliðar.
y+6x=2,y+x=-3
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
y+6x=2
Veldu eina jöfnuna og leystu y með því að einangra y vinstra megin við samasemmerkið.
y=-6x+2
Dragðu 6x frá báðum hliðum jöfnunar.
-6x+2+x=-3
Settu -6x+2 inn fyrir y í hinni jöfnunni, y+x=-3.
-5x+2=-3
Leggðu -6x saman við x.
-5x=-5
Dragðu 2 frá báðum hliðum jöfnunar.
x=1
Deildu báðum hliðum með -5.
y=-6+2
Skiptu 1 út fyrir x í y=-6x+2. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst y strax.
y=-4
Leggðu 2 saman við -6.
y=-4,x=1
Leyst var úr kerfinu.
y+6x=2
Íhugaðu fyrstu jöfnuna. Bættu 6x við báðar hliðar.
y+x=-3
Íhugaðu aðra jöfnuna. Bættu x við báðar hliðar.
y+6x=2,y+x=-3
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}1&6\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}1&6\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}1&6\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-6}&-\frac{6}{1-6}\\-\frac{1}{1-6}&\frac{1}{1-6}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{6}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 2+\frac{6}{5}\left(-3\right)\\\frac{1}{5}\times 2-\frac{1}{5}\left(-3\right)\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
Reiknaðu.
y=-4,x=1
Dragðu út stuðul fylkjanna y og x.
y+6x=2
Íhugaðu fyrstu jöfnuna. Bættu 6x við báðar hliðar.
y+x=-3
Íhugaðu aðra jöfnuna. Bættu x við báðar hliðar.
y+6x=2,y+x=-3
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
y-y+6x-x=2+3
Dragðu y+x=-3 frá y+6x=2 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
6x-x=2+3
Leggðu y saman við -y. Liðirnir y og -y núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
5x=2+3
Leggðu 6x saman við -x.
5x=5
Leggðu 2 saman við 3.
x=1
Deildu báðum hliðum með 5.
y+1=-3
Skiptu 1 út fyrir x í y+x=-3. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst y strax.
y=-4
Dragðu 1 frá báðum hliðum jöfnunar.
y=-4,x=1
Leyst var úr kerfinu.