Leystu fyrir x, y
x=1
y=2
Graf
Spurningakeppni
Simultaneous Equation
\left. \begin{array} { l } { x + y = 3 } \\ { y - x = 1 } \end{array} \right.
Deila
Afritað á klemmuspjald
x+y=3,-x+y=1
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
x+y=3
Veldu eina jöfnuna og leystu x með því að einangra x vinstra megin við samasemmerkið.
x=-y+3
Dragðu y frá báðum hliðum jöfnunar.
-\left(-y+3\right)+y=1
Settu -y+3 inn fyrir x í hinni jöfnunni, -x+y=1.
y-3+y=1
Margfaldaðu -1 sinnum -y+3.
2y-3=1
Leggðu y saman við y.
2y=4
Leggðu 3 saman við báðar hliðar jöfnunar.
y=2
Deildu báðum hliðum með 2.
x=-2+3
Skiptu 2 út fyrir y í x=-y+3. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x=1
Leggðu 3 saman við -2.
x=1,y=2
Leyst var úr kerfinu.
x+y=3,-x+y=1
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}1&1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\\\frac{1}{2}\times 3+\frac{1}{2}\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Reiknaðu.
x=1,y=2
Dragðu út stuðul fylkjanna x og y.
x+y=3,-x+y=1
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
x+x+y-y=3-1
Dragðu -x+y=1 frá x+y=3 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
x+x=3-1
Leggðu y saman við -y. Liðirnir y og -y núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
2x=3-1
Leggðu x saman við x.
2x=2
Leggðu 3 saman við -1.
x=1
Deildu báðum hliðum með 2.
-1+y=1
Skiptu 1 út fyrir x í -x+y=1. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst y strax.
y=2
Leggðu 1 saman við báðar hliðar jöfnunar.
x=1,y=2
Leyst var úr kerfinu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}