Beint í aðalefni
Leystu fyrir x, y
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

x+y=2,2x+y=0
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
x+y=2
Veldu eina jöfnuna og leystu x með því að einangra x vinstra megin við samasemmerkið.
x=-y+2
Dragðu y frá báðum hliðum jöfnunar.
2\left(-y+2\right)+y=0
Settu -y+2 inn fyrir x í hinni jöfnunni, 2x+y=0.
-2y+4+y=0
Margfaldaðu 2 sinnum -y+2.
-y+4=0
Leggðu -2y saman við y.
-y=-4
Dragðu 4 frá báðum hliðum jöfnunar.
y=4
Deildu báðum hliðum með -1.
x=-4+2
Skiptu 4 út fyrir y í x=-y+2. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x=-2
Leggðu 2 saman við -4.
x=-2,y=4
Leyst var úr kerfinu.
x+y=2,2x+y=0
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\0\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}1&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\0\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\0\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{1}{1-2}\\-\frac{2}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}2\\0\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}2\\0\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\times 2\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
Reiknaðu.
x=-2,y=4
Dragðu út stuðul fylkjanna x og y.
x+y=2,2x+y=0
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
x-2x+y-y=2
Dragðu 2x+y=0 frá x+y=2 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
x-2x=2
Leggðu y saman við -y. Liðirnir y og -y núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
-x=2
Leggðu x saman við -2x.
x=-2
Deildu báðum hliðum með -1.
2\left(-2\right)+y=0
Skiptu -2 út fyrir x í 2x+y=0. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst y strax.
-4+y=0
Margfaldaðu 2 sinnum -2.
y=4
Leggðu 4 saman við báðar hliðar jöfnunar.
x=-2,y=4
Leyst var úr kerfinu.