Beint í aðalefni
Leystu fyrir x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

a+b=4 ab=3\times 1=3
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem 3x^{2}+ax+bx+1. Settu upp kerfi til að leysa til þess að finna a og b.
a=1 b=3
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er plús eru a og b bæði plús. Eina slíka parið er kerfislausnin.
\left(3x^{2}+x\right)+\left(3x+1\right)
Endurskrifa 3x^{2}+4x+1 sem \left(3x^{2}+x\right)+\left(3x+1\right).
x\left(3x+1\right)+3x+1
Taktux út fyrir sviga í 3x^{2}+x.
\left(3x+1\right)\left(x+1\right)
Taktu sameiginlega liðinn 3x+1 út fyrir sviga með því að nota dreifieiginleika.
x=-\frac{1}{3} x=-1
Leystu 3x+1=0 og x+1=0 til að finna lausnir jöfnunnar.
3x^{2}+4x+1=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 3 inn fyrir a, 4 inn fyrir b og 1 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
Hefðu 4 í annað veldi.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
Margfaldaðu -4 sinnum 3.
x=\frac{-4±\sqrt{4}}{2\times 3}
Leggðu 16 saman við -12.
x=\frac{-4±2}{2\times 3}
Finndu kvaðratrót 4.
x=\frac{-4±2}{6}
Margfaldaðu 2 sinnum 3.
x=-\frac{2}{6}
Leystu nú jöfnuna x=\frac{-4±2}{6} þegar ± er plús. Leggðu -4 saman við 2.
x=-\frac{1}{3}
Minnka brotið \frac{-2}{6} eins mikið og hægt er með því að draga og stytta út 2.
x=-\frac{6}{6}
Leystu nú jöfnuna x=\frac{-4±2}{6} þegar ± er mínus. Dragðu 2 frá -4.
x=-1
Deildu -6 með 6.
x=-\frac{1}{3} x=-1
Leyst var úr jöfnunni.
3x^{2}+4x+1=0
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
3x^{2}+4x+1-1=-1
Dragðu 1 frá báðum hliðum jöfnunar.
3x^{2}+4x=-1
Ef 1 er dregið frá sjálfu sér verður 0 eftir.
\frac{3x^{2}+4x}{3}=-\frac{1}{3}
Deildu báðum hliðum með 3.
x^{2}+\frac{4}{3}x=-\frac{1}{3}
Að deila með 3 afturkallar margföldun með 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
Deildu \frac{4}{3}, stuðli x-liðarins, með 2 til að fá \frac{2}{3}. Leggðu síðan tvíveldi \frac{2}{3} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Hefðu \frac{2}{3} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Leggðu -\frac{1}{3} saman við \frac{4}{9} með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
\left(x+\frac{2}{3}\right)^{2}=\frac{1}{9}
Stuðull x^{2}+\frac{4}{3}x+\frac{4}{9}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Finndu kvaðratrót beggja hliða jöfnunar.
x+\frac{2}{3}=\frac{1}{3} x+\frac{2}{3}=-\frac{1}{3}
Einfaldaðu.
x=-\frac{1}{3} x=-1
Dragðu \frac{2}{3} frá báðum hliðum jöfnunar.