Leystu fyrir x, y
x = \frac{8}{5} = 1\frac{3}{5} = 1.6
y = \frac{11}{10} = 1\frac{1}{10} = 1.1
Graf
Spurningakeppni
Simultaneous Equation
5 vandamál svipuð og:
\left. \begin{array} { l } { 3 x + 2 y = 7 } \\ { 4 x + 6 y = 13 } \end{array} \right.
Deila
Afritað á klemmuspjald
3x+2y=7,4x+6y=13
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
3x+2y=7
Veldu eina jöfnuna og leystu x með því að einangra x vinstra megin við samasemmerkið.
3x=-2y+7
Dragðu 2y frá báðum hliðum jöfnunar.
x=\frac{1}{3}\left(-2y+7\right)
Deildu báðum hliðum með 3.
x=-\frac{2}{3}y+\frac{7}{3}
Margfaldaðu \frac{1}{3} sinnum -2y+7.
4\left(-\frac{2}{3}y+\frac{7}{3}\right)+6y=13
Settu \frac{-2y+7}{3} inn fyrir x í hinni jöfnunni, 4x+6y=13.
-\frac{8}{3}y+\frac{28}{3}+6y=13
Margfaldaðu 4 sinnum \frac{-2y+7}{3}.
\frac{10}{3}y+\frac{28}{3}=13
Leggðu -\frac{8y}{3} saman við 6y.
\frac{10}{3}y=\frac{11}{3}
Dragðu \frac{28}{3} frá báðum hliðum jöfnunar.
y=\frac{11}{10}
Deildu í báðar hliðar jöfnunar með \frac{10}{3}. Þetta skilar sömu niðurstöðu og að margfalda báðar hliðar með margföldunarandhverfu brotsins.
x=-\frac{2}{3}\times \frac{11}{10}+\frac{7}{3}
Skiptu \frac{11}{10} út fyrir y í x=-\frac{2}{3}y+\frac{7}{3}. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x=-\frac{11}{15}+\frac{7}{3}
Margfaldaðu -\frac{2}{3} sinnum \frac{11}{10} með því að margfalda teljara sinnum teljara og samnefnara sinnum samnefnara. Lækkaðu svo brotið í lægstu liði, ef það er hægt.
x=\frac{8}{5}
Leggðu \frac{7}{3} saman við -\frac{11}{15} með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
x=\frac{8}{5},y=\frac{11}{10}
Leyst var úr kerfinu.
3x+2y=7,4x+6y=13
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}3&2\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\13\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}3&2\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}3&2\\4&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{3\times 6-2\times 4}&-\frac{2}{3\times 6-2\times 4}\\-\frac{4}{3\times 6-2\times 4}&\frac{3}{3\times 6-2\times 4}\end{matrix}\right)\left(\begin{matrix}7\\13\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{1}{5}\\-\frac{2}{5}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}7\\13\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 7-\frac{1}{5}\times 13\\-\frac{2}{5}\times 7+\frac{3}{10}\times 13\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\\\frac{11}{10}\end{matrix}\right)
Reiknaðu.
x=\frac{8}{5},y=\frac{11}{10}
Dragðu út stuðul fylkjanna x og y.
3x+2y=7,4x+6y=13
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
4\times 3x+4\times 2y=4\times 7,3\times 4x+3\times 6y=3\times 13
Til að gera 3x og 4x jafnt skal margfalda alla liði á hverri hlið fyrstu jöfnunnar með 4 og alla liði á hverri hlið annarrar jöfnunnar með 3.
12x+8y=28,12x+18y=39
Einfaldaðu.
12x-12x+8y-18y=28-39
Dragðu 12x+18y=39 frá 12x+8y=28 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
8y-18y=28-39
Leggðu 12x saman við -12x. Liðirnir 12x og -12x núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
-10y=28-39
Leggðu 8y saman við -18y.
-10y=-11
Leggðu 28 saman við -39.
y=\frac{11}{10}
Deildu báðum hliðum með -10.
4x+6\times \frac{11}{10}=13
Skiptu \frac{11}{10} út fyrir y í 4x+6y=13. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
4x+\frac{33}{5}=13
Margfaldaðu 6 sinnum \frac{11}{10}.
4x=\frac{32}{5}
Dragðu \frac{33}{5} frá báðum hliðum jöfnunar.
x=\frac{8}{5}
Deildu báðum hliðum með 4.
x=\frac{8}{5},y=\frac{11}{10}
Leyst var úr kerfinu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}