Beint í aðalefni
Leystu fyrir m, n
Tick mark Image

Svipuð vandamál úr vefleit

Deila

2m-3n=-1,m+n=3
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
2m-3n=-1
Veldu eina jöfnuna og leystu m með því að einangra m vinstra megin við samasemmerkið.
2m=3n-1
Leggðu 3n saman við báðar hliðar jöfnunar.
m=\frac{1}{2}\left(3n-1\right)
Deildu báðum hliðum með 2.
m=\frac{3}{2}n-\frac{1}{2}
Margfaldaðu \frac{1}{2} sinnum 3n-1.
\frac{3}{2}n-\frac{1}{2}+n=3
Settu \frac{3n-1}{2} inn fyrir m í hinni jöfnunni, m+n=3.
\frac{5}{2}n-\frac{1}{2}=3
Leggðu \frac{3n}{2} saman við n.
\frac{5}{2}n=\frac{7}{2}
Leggðu \frac{1}{2} saman við báðar hliðar jöfnunar.
n=\frac{7}{5}
Deildu í báðar hliðar jöfnunar með \frac{5}{2}. Þetta skilar sömu niðurstöðu og að margfalda báðar hliðar með margföldunarandhverfu brotsins.
m=\frac{3}{2}\times \frac{7}{5}-\frac{1}{2}
Skiptu \frac{7}{5} út fyrir n í m=\frac{3}{2}n-\frac{1}{2}. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst m strax.
m=\frac{21}{10}-\frac{1}{2}
Margfaldaðu \frac{3}{2} sinnum \frac{7}{5} með því að margfalda teljara sinnum teljara og samnefnara sinnum samnefnara. Lækkaðu svo brotið í lægstu liði, ef það er hægt.
m=\frac{8}{5}
Leggðu -\frac{1}{2} saman við \frac{21}{10} með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
m=\frac{8}{5},n=\frac{7}{5}
Leyst var úr kerfinu.
2m-3n=-1,m+n=3
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}2&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 3\\-\frac{1}{5}\left(-1\right)+\frac{2}{5}\times 3\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\\\frac{7}{5}\end{matrix}\right)
Reiknaðu.
m=\frac{8}{5},n=\frac{7}{5}
Dragðu út stuðul fylkjanna m og n.
2m-3n=-1,m+n=3
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
2m-3n=-1,2m+2n=2\times 3
Til að gera 2m og m jafnt skal margfalda alla liði á hverri hlið fyrstu jöfnunnar með 1 og alla liði á hverri hlið annarrar jöfnunnar með 2.
2m-3n=-1,2m+2n=6
Einfaldaðu.
2m-2m-3n-2n=-1-6
Dragðu 2m+2n=6 frá 2m-3n=-1 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
-3n-2n=-1-6
Leggðu 2m saman við -2m. Liðirnir 2m og -2m núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
-5n=-1-6
Leggðu -3n saman við -2n.
-5n=-7
Leggðu -1 saman við -6.
n=\frac{7}{5}
Deildu báðum hliðum með -5.
m+\frac{7}{5}=3
Skiptu \frac{7}{5} út fyrir n í m+n=3. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst m strax.
m=\frac{8}{5}
Dragðu \frac{7}{5} frá báðum hliðum jöfnunar.
m=\frac{8}{5},n=\frac{7}{5}
Leyst var úr kerfinu.